

Lecture Notes in Artificial Intelligence 4411
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Rafael H. Bordini Mehdi Dastani
Jürgen Dix Amal El Fallah Seghrouchni (Eds.)

Programming
Multi-Agent Systems

4th International Workshop, ProMAS 2006
Hakodate, Japan, May 9, 2006
Revised and Invited Papers

13

Volume Editors

Rafael H. Bordini
University of Durham
Department of Computer Science
Durham DH1 3LE, UK
E-mail: R.Bordini@durham.ac.uk

Mehdi Dastani
Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail: mehdi@cs.uu.nl

Jürgen Dix
Clausthal University of Technology
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
E-mail: dix@tu-clausthal.de

Amal El Fallah Seghrouchni
LIP6
104, Avenue du Président Kennedy, 75016 Paris, France
E-mail: amal.elfallah@lip6.fr

Library of Congress Control Number: 2007924245

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2, F.3, D.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-71955-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71955-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12048755 06/3142 5 4 3 2 1 0

Preface

These are the proceedings of the 4th International Workshop on Programming
Multi-Agent Systems (ProMAS 2006), held on May 9, 2006 in Hakodate (Japan)
as an associated event of AAMAS 2006: the main international conference on au-
tonomous agents and multi-agent systems (MAS). ProMAS 2006 was the fourth
of a series of workshops that is attracting the increasing attention of researchers
and practitioners in multi-agent systems.

The idea of organizing the first workshop of the series was first discussed
during the Dagstuhl seminar Programming Multi-Agent Systems Based on Logic
(see [6]), where the focus was on logic-based approaches. It was felt that the scope
should be broadened beyond logic-based approaches, thus giving the current
scope and aims of ProMAS [see [4] for the proceedings of the first workshop
(ProMAS 2003), [1] for the proceedings of the second workshop (ProMAS 2004),
and [3] for the proceedings of the third workshop (ProMAS 2005)]. All four
events of the series were held as AAMAS workshops.

Besides the ProMAS Steering Committee (Rafael Bordini, Mehdi Dastani,
Jürgen Dix, and Amal El Fallah Seghrouchni), an AgentLink III Technical Forum
Group on Programming Multi-Agent Systems has been very active in the last
couple of years (see http://www.cs.uu.nl/∼mehdi/al3promas.html for details on
that group). Moreover, we have edited a book on Multi-Agent Programming [2],
and ProMAS 2007 will be held with AAMAS 2007 on May 12 or 13, in Honolulu,
Hawaii (see http://www.cs.uu.nl/ProMAS/ for up-to-date information about
ProMAS).

At the next edition of this workshop series, ProMAS 2007, a Multi-Agent
Contest was organized (see [5] and http://cig.in.tu-clausthal.de/AgentContest/).
This contest was the third in a series that has been co-organized with the CLIMA
workshop series (Computational Logic in Multi-Agent Series). The contest is an
attempt to stimulate research in the area of multi-agent programming by (1)
identifying key problems and (2) collecting suitable benchmarks that can serve
as milestones for testing agent-oriented programming languages, platforms and
tools. A simulation platform has been developed to test MAS which have to
solve a cooperative task in a dynamically changing environment.

In addition, preparations for editing a special issue of the International Jour-
nal of Agent-Oriented Software Engineering are under way. Indeed, we plan
to publish this special issue in the Autumn of 2007. It will emphasize the
close relation between current research on agent-oriented programming lan-
guages and agent-oriented software engineering (ProMAS meets AOSE). More
information about this special issue can be found on the following Web page:
http://www.cs.uu.nl/ProMAS/ProMASSpecialIssue.htm

Finally, we would like to mention the Dagstuhl Seminar on Foundations and
Practice of Programming Multi-Agent Systems that recently took place (see

VI Preface

http://www.dur.ac.uk/r.bordini/Dagstuhl06261/). This seminar was organized
to bring together researchers interested in programming languages for multi-
agent systems, agent-oriented software engineering, and various related aspects
such as verification and formal semantics. In this seminar, participants pre-
sented their views on the most advanced techniques being currently investigated
throughout the world. They also collected the most important open problems
of our research community. The seminar was particularly successful in elucidat-
ing the relationship between work being done by the programming languages for
multi-agent systems (ProMAS) research community and the agent-oriented soft-
ware engineering (AOSE) research community. Even though the initiative for
this seminar arose from the ProMAS community, many prominent researchers
from the AOSE community were attracted as well. This clearly shows the tight
connection between ProMAS and AOSE research.

One of the driving motivations behind the ProMAS workshop series (and all
associated activities) was the observation that the area of autonomous agents
and MAS has grown into a promising technology offering sensible alternatives
for the design of distributed, intelligent systems. Several efforts have been made
by researchers and practitioners, both in academia and industry, and by several
standardization consortia in order to provide new languages, tools, methods, and
frameworks so as to establish the necessary standards for a wide use of MAS tech-
nology. However, until recently the main focus of the MAS research community
has been on the development, sometimes by formal methods but often infor-
mally, of concepts (concerning both mental and social attitudes), architectures,
coordination techniques, and general approaches to the analysis and specifica-
tion of MAS. In particular, this contribution has been quite fragmented, without
any clear way of “putting it all together,” and thus completely inaccessible to
practitioners.

We are convinced today that the next step in furthering the achievement of
the MAS project is irrevocably associated with the development of programming
languages and tools that can effectively support MAS programming and the im-
plementation of key notions in MAS in a unified framework. The success of MAS
development can only be guaranteed if we can bridge the gap from analysis and
design to effective implementation. This, in turn, requires the development of
fully-fledged and general purpose programming technology so that the concepts
and techniques of MAS can be easily and directly implemented.

ProMAS 2006, as indeed ProMAS 2003, ProMAS 2004 and ProMAS 2005,
was an invaluable opportunity for leading researchers from both academia and
industry to discuss various issues on programming languages and tools for MAS.
Showing the increasing importance of the ProMAS aims, the attendance to our
workshop has been growing steadily over the years.

This volume of the LNAI series constitutes the official (post-)proceedings of
ProMAS 2006. It presents the main contributions that featured in the latest
ProMAS event. It contains 12 high-quality accepted and revised papers and, in
addition, two invited papers. The structure of this volume is as follows:

Preface VII

Invited papers: We were honored to have Onn Shehory, a leading researcher
in the area, giving the invited talk at ProMAS 2006. Onn Shehory has con-
tributed to theoretical research on game-theoretic coalition formation, but
also has an interest in agent-oriented software engineering, with significant
industrial experience, thus an ideal speaker for the ProMAS workshop series.
Subsequently to his talk, he wrote a paper to feature in these proceedings.
The paper, based on the invited talk, entitled “A Self-Healing Approach
to Designing and Deploying Complex, Distributed and Concurrent Software
Systems,” discusses a recent project addressing the important area of “self-*”
systems. Computing systems with the ability to heal themselves, by diag-
nosing the cause of failures or inadequate performance and automatically
restructuring software components or operating parameters, would make a
major impact in the quality of complex dependable systems to be developed
in the future.

We also invited Jörg Müller to contribute a paper on his latest work on
combining BDI agent and P2P protocols. He wrote the paper, co- authored
with Klaus Fischer, Fabian Stäber, and Thomas Friese, entitled “Using Peer-
to-Peer Protocols to Enable Implicit Communication in a BDI Agent Archi-
tecture.” The paper describes research aimed at extending current agent
platforms so that agents can interact both through the usual message-based
communication but also through document-based communication, as is typ-
ical in business processes. Their ideas were practically realized by combining
the JACK Agent Platform and the P2P Business Resource Management
Framework.

Part I: The first part of these proceedings contains four papers.
The first paper, “Asimovian Multiagents: Applying Laws of Robotics to

Teams of Agents and Humans” by Nathan Schurr, Pradeep Varakantham,
Emma Bowring, Milind Tambe and Barbara Grosz, investigates the first
two laws of Isaac Asimov formulated in the 1940s. It turns out that oper-
ationalizing these laws in the context of mixed human-agent teams raises
several problems. Among them the uncertainty of agents with respect to
their knowledge of the world.

The second paper, “Persistent Architecture for Context-Aware Lightweight
Multi-Agent System” by Aqsa Bajwa, Obaid Malik, Sana Farooq, Sana
Khalique and Farooq Ahmad, is about an architecture for lightweight de-
vices (e.g., PDAs). An important aspect is to minimize communication la-
tency and to develop a FIPA-compliant context-aware system that can be
used for business and e-commerce applications.

The third paper, “Design of Component-Based Agents for Multi-Agent-
Based Simulation” by Jean-Pierre Briot, Thomas Meurisse and Frédéric
Peschanski, presents a component-based approach to developing agent sys-
tems, based on an explicit control flow between components. Complex be-
haviors can be modelled by composite components. The framework supports
both bottom-up as well as top-down approaches.

The fourth paper, “Incorporating Knowledge Updates in 3APL – Prelim-
inary Report” by Vivek Nigam and João Leite, extends the belief base and

VIII Preface

the goal base of the 3APL programming language for MAS to use dynamic
logic programming, which allows for the representation of changing knowl-
edge. The advantages of the extension include: evolving knowledge and goal
bases, the use of strong negation as well as negation as failure, and goals
and communication can be more expressive; as a consequence of increased
expressiveness, there is also an increase in the complexity of computing an
agent reasoning cycle.

Part II: The second part contains four papers.
The first paper, “Comparing Apples with Oranges: Evaluating Twelve

Paradigms of Agency” by Linus Luotsinen, Ladislau Bölöni, Joakim
Ekblad, Ryan Fitz-Gibbon and Charles Houchin, uses 12 different notions of
agency such as rule-based agents, affective agents, and reinforcement agents
in order to implement agents that act in an environment similar to artificial
life and game environments. The paper provides a comparative analysis of
these notions of agency and indicates which type of problems a development
team will face if it decides to use a particular agency notion to implement
their system.

The second paper, “Augmenting BDI Agents with Deliberative Planning
Techniques” by Andrzej Walczak, Lars Braubach, Alexander Pokahr and
Winfried Lamersdorf, investigates the application and coupling of state-
based planners to BDI agent frameworks. In this proposal, the BDI frame-
work is responsible for plan monitoring and re-planning while the state-based
planner is responsible for plan generation.

The third paper, “ALBA : A Generic Library for Programming Mobile
Agents with Prolog” by Benjamin Devèze, Caroline Chopinaud and Patrick
Taillibert, presents a generic library to be used by mobile agents written in
Prolog. This library supports the creation, execution, mobility and commu-
nication of agents.

The fourth paper, “Bridging Agent Theory and Object Orientation: Agent-
Like Communication Among Objects” by Matteo Baldoni, Guido Boella and
Leendert van der Torre, compares the message-sending mechanism between
agents and the method-invocation mechanism of objects. They propose an
extension of the method-invocation mechanism with ingredients such as the
sender identity, the state of interaction protocol, and the roles played in the
interactions.

Part III: The third part contains four papers that tackle the issues of valida-
tion, debugging and testing agents and MAS. All these papers consider an
MAS as a particular type of distributed system in which the active entities,
i.e., agents, are autonomous and run concurrently.

The first paper, “Validation of BDI Agents” by Jan Sudeikat, Lars
Braubach, Alexander Pokahr, Winfried Lamersdorf and Wolfgang Renz, ad-
dresses the issue of testing and debugging BDI-based MAS. The authors
examine how the reasoning mechanism inside agent implementations can be
checked and how static analysis of agent declarations can be used to visu-
alize and check the overall communication structure in closed MAS. They

Preface IX

also present the corresponding tool support, which relies on the definition
of crosscutting concerns in BDI agents and enables both approaches to the
Jadex Agent Platform. The second paper, “A Tool Architecture to Verify
Properties of Multiagent System at Runtime” by Denis Meron and Bruno
Mermet, describes an architecture allowing one to verify the properties of
agents and MAS at runtime. The paper defines a notion of property and
describes the proposed architecture and the way to check MAS.

The third paper, “On the Application of Clustering Techniques to Sup-
port Debugging Large-Scale Multi-agent Systems” by Juan A. Bot́ıa, Juan
M. Hernansáez and Antonio F. Gómez-Skarmeta, situates the problem of
debugging distributed MAS by firstly studying the classical approaches for
conventional code debugging and also the techniques used in distributed
systems in general. From this initial perspective, it tries to situate agent
and MAS debugging. It finally proposes the use of conventional data mining
techniques like clustering to help, by summarizing, in debugging large-scale
MAS.

The fourth paper, “Debugging Agents in Agent Factory” by Rem Collier,
describes how debugging has been supported for the Agent Factory Agent
Programming Language (AFAPL). This language employs mental notions
such as beliefs, goals, commitments, and intentions to facilitate the construc-
tion of agent programs that specify the high-level behavior of the agent.

We would like to thank all the authors, the invited speaker, the authors of
the second invited paper, the Program Committee members, and reviewers for
their outstanding contribution to the success of ProMAS 2006. We are particu-
larly grateful to the AAMAS 2006 organizers for their technical support and for
hosting ProMAS 2006.

January 2007 Rafael H. Bordini
Mehdi Dastani

Jürgen Dix
Amal El Fallah Seghrouchni

X Preface

References

1. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni,
editors. Programming Multi-Agent Systems: Second International Workshop (Pro-
MAS 2004), held with AAMAS-2004, 20th of July, New York City, NY (Revised
Selected and Invited Papers), number 3346 in LNAI, Berlin, 2004. Springer-Verlag.

2. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni,
editors. Multi-Agent Programming: Languages, Platforms and Applications. Num-
ber 15 in Multiagent Systems, Artificial Societies, and Simulated Organizations.
Springer-Verlag, 2005.

3. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni, ed-
itors. Programming Multi-Agent Systems: Third International Workshop (ProMAS
2005), held with AAMAS-2005, 26th of July, Utrecht, the Netherlands (Revised Se-
lected and Invited Paper), number 3862 in LNAI, Berlin, 2005. Springer-Verlag.

4. M. Dastani, J. Dix, and A. El Fallah Segrouchni, editors. Programming Multi Agent
Systems (ProMAS 2003), number 3067 in LNAI, Berlin, 2004. Springer-Verlag.

5. Mehdi Dastani, Jürgen Dix, and Peter Novak. The Second Contest on Multi-Agent
Systems based on Computational Logic. In K. Inoue, K. Satoh, and F. Toni, editors,
Proceedings of CLIMA’06, Revised Selected and Invited Papers, number 4371 in
LNAI, pages 156–187, Hakodate, Japan, 2006. Springer-Verlag.

6. Jürgen Dix, Michael Fisher, and Yingqian Zhang. Programming Multi Agent Sys-
tems based on Logic. Technical Report Dagstuhl Seminar Report 361, IBFI GmbH,
Schloß Dagstuhl, 2002.

Organization

Organizing Committee

Rafael H. Bordini (University of Durham, UK)
Mehdi Dastani (Utrecht University, The Netherlands)
Jürgen Dix (Clausthal University of Technology, Germany)
Amal El Fallah Seghrouchni (University of Paris VI, France)

Program Committee

Suzanne Barber (University of Texas at Austin, USA)
Lars Braubach (University of Hamburg, Germany)
Jean-Pierre Briot (University of Paris 6, France)
Keith Clark (Imperial College, UK)
Rem Collier (University College Dublin, Ireland)
Yves Demazeau (Institut IMAG - Grenoble, France)
Frank Dignum (Utrecht University, The Netherlands)
Michael Fisher (University of Liverpool, UK)
Jorge Gómez-Sanz (Universidad Complutense Madrid, Spain)
Vladimir Gorodetsky (Russian Academy of Sciences, Russia)
Benjamin Hirsch (TU Berlin, Germany)
Shinichi Honiden (NII, Tokyo, Japan)
Jomi Hübner (Universidade Regional de Blumenau, Brazil)
João Leite (Universidade Nova de Lisboa, Portugal)
Jiming Liu (Hong Kong Baptist University, Hong Kong)
John-Jules Meyer (Utrecht University, The Netherlands)
Oliver Obst (Koblenz-Landau University, Germany)
Gregory O’Hare (University College Dublin, Ireland)
Andrea Omicini (University of Bologna, Italy)
Agostino Poggi (Università degli Studi di Parma, Italy)
Alexander Pokahr (University of Hamburg, Germany)
Chris Reed (Calico Jack Ltd., UK)
Birna van Riemsdijk (Utrecht University, The Netherlands)
Sebastian Sardina (RMIT University, Australia)
Ichiro Satoh (NII, Kyoto, Japan)
Onn Shehory (IBM Haifa Research Labs, Haifa University, Israel)
Kostas Stathis (City University London, UK)
Simon Thompson (BT, UK)
Leon van der Torre (CWI, The Netherlands)
Paolo Torroni (University of Bologna, Italy)
Gerhard Weiss (Technische Universität München, Germany)

XII Organization

Michael Winikoff (RMIT University, Melbourne, Australia)
Cees Witteveen (Delft University, The Netherlands)

Additional Reviewers

Peter Novak (Clausthal University of Technology, Germany)
Damien Pellier (Université Paris 5, France)
Yingqian Zhang (Clausthal University of Technology, Germany)

Table of Contents

Invited Papers

Invited Talk: A Self-healing Approach to Designing and Deploying
Complex, Distributed and Concurrent Software Systems 3

Onn Shehory

Invited Paper: Using Peer-to-Peer Protocols to Enable Implicit
Communication in a BDI Agent Architecture . 15

Klaus Fischer, Jörg P. Müller, Fabian Stäber, and Thomas Friese

Part I

Asimovian Multiagents: Applying Laws of Robotics to Teams of
Humans and Agents . 41

Nathan Schurr, Pradeep Varakantham, Emma Bowring,
Milind Tambe, and Barbara Grosz

Persistent Architecture for Context Aware Lightweight Multi-agent
System . 57

Aqsa Bajwa, Sana Farooq, Obaid Malik, Sana Khalique,
Hiroki Suguri, Hafiz Farooq Ahmad, and Arshad Ali

Architectural Design of Component-Based Agents: A Behavior-Based
Approach . 71

Jean-Pierre Briot, Thomas Meurisse, and Frédéric Peschanski

Part II

Comparing Apples with Oranges: Evaluating Twelve Paradigms of
Agency . 93

Linus J. Luotsinen, Joakim N. Ekblad, T. Ryan Fitz-Gibbon,
Charles Andrew Houchin, Justin Logan Key, Majid Ali Khan,
Jin Lyu, Johann Nguyen, Rex R. Oleson II, Gary Stein,
Scott A. Vander Weide, Viet Trinh, and Ladislau Bölöni

Augmenting BDI Agents with Deliberative Planning Techniques 113
Andrzej Walczak, Lars Braubach, Alexander Pokahr, and
Winfried Lamersdorf

XIV Table of Contents

ALBA: A Generic Library for Programming Mobile Agents with
Prolog . 129

Benjamin Devèze, Caroline Chopinaud, and Patrick Taillibert

Bridging Agent Theory and Object Orientation: Agent-Like
Communication Among Objects . 149

Matteo Baldoni, Guido Boella, and Leendert van der Torre

Adding Knowledge Updates to 3APL . 165
Vivek Nigam and João Leite

Part III

Validation of BDI Agents . 185
Jan Sudeikat, Lars Braubach, Alexander Pokahr,
Winfried Lamersdorf, and Wolfgang Renz

A Tool Architecture to Verify Properties of Multiagent System at
Runtime . 201

Denis Meron and Bruno Mermet

On the Application of Clustering Techniques to Support Debugging
Large-Scale Multi-Agent Systems . 217

Juan A. Bot́ıa, Juan M. Hernansáez, and
Antonio F. Gómez-Skarmeta

Debugging Agents in Agent Factory . 229
Rem Collier

Author Index . 249

Invited Papers

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 3–13, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Self-healing Approach to Designing and Deploying
Complex, Distributed and Concurrent Software Systems*

Onn Shehory

IBM Haifa Research Lab, Mount Carmel
31905 Haifa, Israel
Onn@il.ibm.com

Abstract. Software systems have become too complex to manage and fix
manually. An emerging approach to overcome this problem is software self-
healing. Studies in related disciplines have offered several self-healing
solutions, however these usually address a single class of problems, or they are
not applicable in fielded systems. To address the industrial need for software
self-healing, we have initiated the EU SHADOWS project. This project
concentrates on self-healing of complex systems, extending the state-of-art in
several ways. It introduces pioneering technologies to enable the systematic
self-healing of classes of failures which are not solved by other approaches. It
additionally introduces an approach to the integration of several self-healing
technologies in a common solution framework. It also adopts a model-based
approach, where models of desired software behavior direct the self-healing
process. Combined, these allow for lifecycle support of software self-healing,
applicable to both academic and industrial systems.

Keywords: Complex software systems, Self-healing, Autonomic computing.

1 Introduction

Our society has become dependent on the correct functioning of complex software
systems. Classical software assurance methods are limited in their ability to address
the increasing scale—in both size and complexity—of contemporary computer
systems. This negatively affects system quality and total cost of system ownership.
Recent research on self-management and autonomic computing introduces new
possibilities for developing highly-reliable self-managed complex software systems,
while reducing cost-of-ownership. Computational systems able to manage themselves
are commonly called self-* systems. Current research in this area is still in its early
stages. We believe that independent solutions for self-* systems cannot be applied
straightforwardly in industrially relevant systems, and that industrially applicable
solutions must integrate several technologies in a common framework.

Self-healing refers to the capability of a software system to automatically diagnose
and heal the root-cause of its failures and performance problems, and prevent them

* This research is funded in part by the European Commission via the SHADOWS project

under contract No. 035157.

4 O. Shehory

from reappearing. This is performed through structural modifications of the software
system and its operating parameters. We have initiated an EU project (SHADOWS
[1]) that concentrates on the self-healing of complex systems, extending the state-of-
art in several ways. Firstly, it introduces pioneering technologies to enable systematic
self-healing of classes of failures which are not solved by other approaches.
Additionally, it integrates several technologies which address different classes of
problems and work at different abstraction levels, to provide a common solution
framework. Further, it implements a model-based approach, where models of desired
software behavior govern the self-healing process throughout the system design phase
and the system deployment phase.

The SHADOWS project consists of nine partners. Some partners are research
organizations, whereas others are industrial software developers. This combination
allows the research partners not only work together to create a unified self-healing
solution, but also to validate the solution in the field, in several different application
domains, thus delivering a higher-quality solution.

At the time of writing this document, the project has been running for only a few
months. Therefore, this article will introduce the background, the problem, the
underlying technologies, and the approach and directions taken, however concrete
results are not available yet. Intermediate results of the project will be posted at its
web site [1].

2 Problem Statement

Classical software assurance introduces two main classes of techniques for increasing
system reliability [2][3]. The first class includes rigorous development and testing
methodologies; these increase the quality of single components and of their
integration [4][5]. The second class includes fault tolerance mechanisms [6][7], which
can guarantee the reliability of the system in the presence of faults. The classical
methods have proven very useful in the past, and are still widely used. However, they
do not scale well to address the increase in size and complexity of contemporary
computer systems. This negatively affects the total cost of system ownership. To
address the limited capability of classical techniques, self-management and autonomic
computing [8][9] methods are being studied. These new research directions introduce
new possibilities for developing highly-reliable self-managed complex software
systems, while reducing cost-of-ownership.

Self-management of computational systems has already been envisioned in the
past, notably by Turing and von-Neumann [10][11]. Only recently, as a result of
market needs, attention to self-management has returned. Self-managed systems are
commonly denoted as self-* systems; the asterisk may indicate a variety of attributes,
e.g., self-awareness, self-configuration, self-diagnosis etc. Current research in this
area has explored multiple directions, approaches and problems, however it is still in
its early stages and has focused mostly on academic settings. Among the approaches
to self-management one finds reconfigurable architectures, consistency management,
code relocation, control theory, agent-based systems, game theory, and others
[12][13][14][15][16][17][18][19][20]. Below we briefly survey the primary research
directions in the field of self-healing.

 A Self-healing Approach 5

3 Related Work

Reconfigurable architectures are systems capable of dynamically modifying their
structure. This is done using strategies that are automatically applied when a failure
occurs [21][22][23]. Examples of such capabilities are the dynamic addition of
redundant servers, the ability to modify the allowed bandwidth for a connection, the
addition and removal of components, and the dynamic modification of the
connections between components. These self-healing techniques are based on
architectural reconfiguration focused on non-functional system properties, such as
service availability and performance [24][25][26].

Consistency management techniques are runtime techniques for maintaining the
system in a consistent and legal state. Examples include rollback and resume
techniques [27] and failure masking techniques. A solution based on failure masking
and reconfigurable architectures is presented in [28]. That work introduces a self-
healing system that can discover, and connects to, new service providers while
devices move through different environments.

Code modification and migration techniques dynamically modify an application's
code to repair diagnosed faults. Work in [29] demonstrates the use of code mobility
techniques to dynamically move code to different locations, in order to repair faults.
A preliminary study in this theme suggests the replacement of the implementation of
an active system component with a new implementation, while maintaining the
availability of the component's functionality [30].

In our research we study several extensions to the state-of-the-art. We develop
techniques that enable the self-healing of problem areas for which no other approach
provides an adequate solution. Specifically, we target the following:

• Self-healing of concurrency problems, for which no solution is available
currently.

• Self-healing of functional problems is addressed by multiple studies. In our
project we develop an innovative automated model-based approach: the
appropriate healing strategy is selected based on comparison of fault models to
information monitored at healthy-system runtime.

• Self-healing of performance problems was previously addressed, to some extent,
by reconfigurable architectures. We incorporate sophisticated statistical and
machine learning methods into the self-healing strategy. This allows healing not
only the system, but the healing strategy itself, to increase the effectiveness of the
self-healing.

In addition to the specific problem domains and approaches we address, our project
integrates several technologies. It also introduces a shared model-based approach that
works at different levels of abstraction and addresses several parts of the system
lifecycle. Furthermore, we target industrial applications, moving the self-healing
paradigm from academia to the field.

6 O. Shehory

4 Solution Approach

Independent self-* solutions studied to date are typically not applicable
straightforwardly to industrial systems. Therefore, our approach does not limit itself
to studying new solutions. Rather, we integrate several solutions in a common
framework. Our goal is to allow self-healing by means of automatic diagnosis and
healing of the root-cause of system failures and performance problems. We achieve
this through structural modifications of the software system and its operating
parameters. To provide solutions to the self-healing problem, we target three
underlying requirements for software quality and reliability, as follows:

(1) Adherence to functional requirements;
(2) Robust performance;
(3) Safe utilization of concurrency.

Generically, self-healing is a repetitive four-stage process: problem detection, root-
cause analysis, healing and assurance. The detection stage reveals the presence of a
problem. Root-cause analysis identifies the fault that caused the problem. The healing
stage provides problem remediation. Lastly, the assurance stage examines the healing
to ensure that it solves the problem without introducing new problems.

Our self-healing solution follows the four-stage approach, however it additionally
combines several self-healing technologies: concurrency testing, fault prediction,
automatic setting of performance thresholds, and capturing and healing of faults.
While each of these technologies can be applied in isolation, their integration and
application across the software lifecycle will provide a comprehensive solution for
developing self-healing systems.

4.1 Technical Foundations

The SHADOWS project will produce a well-integrated set of technologies, embodied
in tools that will support a methodology for developing systems capable of self-
healing. Our solution will enable self-healing throughout the software lifecycle so that
developers and system administrators can benefit from the results of the project across
multiple dimensions of use. These dimensions include:

 Self-healing of software both at design time and at testing and deployment time.
 Self-healing at the component level, as well as at the system level.
 Self-healing for multiple types of errors (performance, function, concurrency).

The self-healing capabilities we develop are based on novel algorithms for the
detection, prediction and classification of faults, and for performing a respective
corrective action. The detection and prediction activities are performed against
models of desirable behavior. Figure 2 presents a conceptual view of our self-healing
framework. The framework includes a model repository, a monitoring layer, an
analysis layer, and a correction layer. The model repository includes models for safe
concurrency, functional requirements, and performance behaviors. The detection and
prediction of the problems, manifested by deviations from the models, is performed
by the monitoring layer A. The classification and identification of the problems is

 A Self-healing Approach 7

performed by the analysis layer B. Detection and analysis of a problem by layer B
leads to the invocation of corresponding corrective action (either by layer C at design
time, or by layer D at deployment time). Such corrective actions may then feed into
the managed system or influence its working environment.

Fig. 1. The architecture of the integrated self-healing framework. The grey elements are our
new technologies. The white elements are pre-existing technologies.

Following, we describe our self-healing framework and techniques in more detail.

4.2 Self-healing of Concurrency Problems

A model for safe concurrency was recently introduced in [31][32]. That model covers
a comprehensive set of unsafe code patterns that may lead to race conditions,
deadlocks, and other concurrency problems. The model is based on an abstraction of
unsafe scheduling and synchronization of threads. It includes both generic unsafe
patterns and application-specific patterns. In our current study we further extend the
safe concurrency model by identifying new domain-specific unsafe patterns.

To identify and predict concurrency-related problems, we develop algorithms that
examine program code at coding and testing time, compare it to the safe concurrency
models, and detect unsafe concurrency patterns in the code. We employ static
identification algorithms that analyze the code for structure and internal dependencies.
We further employ dynamic identification algorithms that detect runtime
concurrency-related events (e.g., access to global variables). By monitoring such
events we can determine whether the program has incurred, or is about to incur, an
unsafe behavior. The dynamic identification algorithms use various heuristics to
increase the probability of exposing concurrency-related problems.

8 O. Shehory

Once unsafe concurrency problems are detected, we need to resolve them. Our
approach to resolving such problems is to automatically introduce scheduling and
synchronization statements to affect the concurrency behaviors of the code. This
healing process may be applied during the design, testing, and deployment stages of
the system lifecycle. For example, if an access to a common resource requires the
acquisition of a lock that is not present in the code, a lock statement should be added
to fix the problem. Our approach further requires that, upon adding new statements to
the code, the result should be verified to make sure that the fixes have the sought
effect.

4.3 Self-healing of Functional Problems

Our approach to self-healing of functional problems is based on three types of
models: system, fault, and component models. The system model specifies behavioral
properties that must be satisfied by the system. These properties can be provided by
the user, however can also be extracted from the code and its specifications, when
these are available. The fault model specifies the types of faults that can be identified
and repaired by our functional self-healing solution. We specifically address fault
types related to incompatibility of components which were designed and implemented
separately but need to work together as part of an integrated system. The component
models describe the behavior of the system's components. They include invariants
that should hold during normal system operation; they also include finite state
machines describing normal operation inter-component interaction patterns.
Component models are provided by the Behavior Capture and Test (BCT) technology
[33], which generates and updates them based on behavior observations.

At normal system operation, the BCT technology generates and updates the
component models. Upon violation of the system model, the information collected by
BCT during the faulty time is checked against the component models. Invariants
violations indicate which components misbehaved, and execution traces show the
interactions corresponding to the failure. Combined with the component models, this
information is checked against the fault model to identify fault models of relevance.
Once a specific fault class is identified, appropriate self-healing can be activated.

Our approach to self-healing of functional problems is as follows. Upon fault
detection at the system level, healing is applied at the intra- and inter-component
levels. This is performed by enabling components with self-healing capabilities. Such
enablement is done using reconfiguration algorithms which are implemented either
within the component, or externally. In some cases, algorithms for healing specific
components are not available, however reconfiguration at the systems level may still
be applied to resolve the problem.

4.4 Self-healing of Performance Problems

Our approach to performance self-healing is based on two models: system-level
performance model and component-level performance models. Correlations among
these can serve as indicators to dissatisfactory performance behavior. The system-
level performance model specifies system performance requirements in terms of
compliance with performance goals. Commonly, this specification is provided via a

 A Self-healing Approach 9

Service Level Objective (SLO). SLOs specify conditions on, and expectations from,
system-level operational parameters. Component-level performance models specify
requirements on component-level operational parameters, commonly expressed by
thresholds set on these parameters. For example, in software that manages a storage
server, an SLO may specify that the number of end-to-end transactions per second
must be at least 500. A related component-level threshold may specify a lower bound
on the number of disk I/Os per second.

In diagnosing performance problems we rely on correlating system-level SLO
violations with the underlying component-level threshold violations. Yet, the general
case of this problem is very challenging and usually does not have an optimal
solution. This means that performance diagnostics inherently include false alarms.
False positive alarms occur when a threshold is violated at the component level, but
the violation does not result in a violation of the SLO (and thus the system behaves
normally). False negative alarms occur when an SLO is violated (and thus the system
does not behave in an acceptable manner) but no component-level violation is
detected. Both types of false alarms are undesirable as they provide false indications
of performance problems. We address this undesirable condition by developing
algorithms that, in addition to correlating the system-level model with the component-
level model, allow reduction in the level of false alarms [34]. Our false alarms model
accounts for both false negative and false positive alarms.

Upon diagnosing a performance problem (an SLO violation) our self-healing
algorithms compute and set improved component-level parameters to prevent future
violations. The calculation of the new component-level parameters is performed in
two stages. Initially, in cases where the number of component-level parameters is
large, feature selection techniques are employed to converge on a smaller set of
relevant parameters. Then, time series of SLO violations, threshold violations, and
operational parameters are used as input to correlation algorithms for computing the
optimized parameters. This type of performance optimization can be performed both
at design time, to arrive at an optimized system configuration, and at run time, to
allow dynamic automated self-healing.

4.5 Integration of the Self-healing Solutions

Although concurrency, functional and performance problems (and solutions) are
fundamentally different, they do interfere and interact. Therefore, the self-healing
technologies we provide are to be integrated at four main levels: the logical level
(models and problem analysis techniques), the technological level, the design level
(tools and development environments) and the methodological level.

The concurrency, functional and performance models for problem analysis rely on
different information. However, they have strong complementarities and synergies,
and we exploit these in our solution. A system under development can be
automatically healed to correct potential concurrency and performance problems. The
respective healing techniques might interfere with each other. For instance, changing
the code to avoid concurrency problems can lead to performance problems. Therefore
it is necessary that healing techniques be coordinated to reduce interference. We
facilitate coordination by providing each healing technique with access to the models
of the others. By this, we allow early identification of the consequences of fixes

10 O. Shehory

suggested by the healing techniques. In some cases, it is possible to improve the
results of healing techniques by letting them to interact and collaborate. For instance,
a performance problem can be caused by an inefficient implementation of
concurrency and can be healed by modifying the concurrency structure, thus
improving performance without affecting concurrency.

The healing of concurrency, functional and performance problems shares several
underlying technologies. In particular, all require monitoring infrastructure and
actuating technologies. The monitoring infrastructure is used to collect run-time data
over the temporal and functional behavior of the monitored system. The collected data
are then analyzed to detect problems and find their root-causes. Run-time actuation is
used for activating healing procedures. In our self-healing approach, components
implement healing extensions; these allow modification of both their internal and
interaction behavior. The healing of both performances and functional problems will
use these actuation technologies to apply changes.

The technologies we develop address different problems, but will share the same
methodological approach to the design and implementation of a self-healing system.
The integrated methodology will focus on (1) coding style for facilitating healing at
development time, (2) methods for writing specification documents that can be easily
checked by inspection engines, (3) methods for implementing features that support
run-time healing, (4) guidelines for implementing components that facilitate
monitoring of their behavior. In brief, the methodology will provide a comprehensive
set of guidelines to follow along the entire self-healing software lifecycle.

4.6 Evaluation Methodology

To evaluate the self-healing technologies we develop, we will be using industrial case
studies. The new technologies will be evaluated using sounding boards provided by
the industrial partners. The target applications for the evaluation are: (embedded)
consumer electronics software systems, telecommunications software systems, air
traffic control software systems, and mobile and web-based software systems. To
evaluate the technologies in a systematic and generic manner, we are developing an
evaluation methodology. Using such a methodology, we expect our solutions to yield
a positive increase in system reliability, measured by (1) a reduction in the number of
functional errors (goal: 20%), (2) a reduction in the average number of performance
problems (goal: 15%) and in network traffic related to performance problem detection
(goal: 20%), (3) a reduction in the number of and concurrency-related errors (goal:
20%). These measures are based on early experiments performed by our partners.
The relative improvement is measured in comparison with systems in which our self-
healing solutions are not implemented.

5 Summary

Our self-healing research within the SHADOWS project introduces a new approach to
the development of robust complex software systems, building on technologies
brought in by and experience of our partners. We develop standalone technologies
and integrate them into a coherent framework and provide a design methodology to be

 A Self-healing Approach 11

used in conjunction with the framework. These should allow self-healing to become
accessible to software developers, system administrators, and users of IT systems at
large. To achieve our goals, we perform the following:

 Develop self-healing technologies for concurrency, functional and performance
problems. These include concurrency testing, fault prediction, automatic setting
of performance thresholds, and capturing and healing of faults. This is performed
based on the background technologies contributed by the partners.

 Establish a new self-healing system design paradigm as well as a methodology to
guide in the use of the new paradigm.

 Implement efficient CASE tools for designing and managing self-healing
systems, to be used in conjunction with the self-healing methodology.

 Test the methodology and the tools in several software environments in the field.
 Develop an evaluation methodology and criteria for self-healing system design,

and evaluate and quantify the results of the project using these criteria.
 Use internal feedback from partners to refine the methodology and the tools.

These research and development activities should not only provide a self-healing
techniques, methodology and tools, but also support their adoption in industrial
applications. We believe that the SHADOWS project will provide initial steps
towards this direction, however further research and standardization afforest will be
required to make self-healing software part of mainstream software engineering.

References

[1] https://sysrun.haifa.il.ibm.com/shadows/index.html
[2] Software Reliability: Measurement, Prediction, Application, J.D. Musa, J.D., A. Iannino

and K. Okumoto, McGraw–Hill, Professional Edition: Software Engineering Series,
1990.

[3] Metrics and Models in Software Quality Engineering (2nd Edition), Stephen H. Kan,
Addison-Wessley, 2002.

[4] Software Quality Assurance: From Theory to Implementation, D. Galin, Pearson
Education, 2003.

[5] The Art of Software Testing (2nd Edition), G. Myers, Wiley, 2004.
[6] Distributed Systems: Principles and Paradigms, A.S. Tanenbaum and M. van Stee,

Prentice-Hall, 2002.
[7] Fault Tolerant System Design, S. Levi and Ashok Agrawala, McGraw-Hill, New York,

1994.
[8] The Dawn of Autonomic Computing, A.G. Ganek and T.A. Corbi, The Dawn of the

Autonomic Computing Era, IBM Systems Journal, Vol. 42(1), 2003.
[9] The Berkeley/Stanford Recovery-Oriented Computing Project, http://roc.cs.berkeley.edu/

[10] Theory of self-Reproducing Automata, J. von-Newmann, A.W. Burks, Ed., University of
Illinois Press, 1966.

[11] Intelligent Machinery, A.M. Turing, 1948, Report for National Physical Laboratory, in
Machine Intelligence 7, Eds. B. Meltzer and D. Michie (1969).

12 O. Shehory

[12] Complexity and Emergent Behaviour in ICT Systems, S. Bullock and D. Cliff,, HP Labs
report HPL-2004-187, 2004,
http://www.hpl.hp.com/techreports/2004/HPL-2004-187.html.

[13] Towards a Paradigm Change in Computer Science and Software Engineering: a
Synthesis, F. Zambonelli and V. Parunak, The Knowledge Engineering Review, Vol.
18:4, 329–342. 2004.

[14] Proceedings of SELF-STAR: International Workshop on Self-* Properties in Complex
Information Systems, 31 May - 2 June 2004, University of Bologna,
http://www.cs.unibo.it/self-star/program.html

[15] Recovery Oriented Computing: Motivation, Definition, Techniques, and Case Studies, D.
Patterson et al, Computer Science Technical Report UCB//CSD-02-1175, U.C. Berkeley,
March 15, 2002 http://roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf.

[16] Self-Management: The Solution to Complexity or Just Another Problem?, K. Herrmann,
G. Mühl, and K. Geihs, IEEE Distributed Systems Online, V 6(1)1, 2005.

[17] Efficient and Transparent Instrumentation of Application Components Using an Aspect-
oriented Approach, M. Debusmann and K. Geihs, Proc. 14th IFIP/IEEE Workshop on
Distributed Systems: Operations and Management (DSOM 03), LNCS 2867, Springer-
Verlag, 2003, pp. 209-220.

[18] Research Perspectives in Self-Healing Systems, D. Tosi, Technical Report LTA:2004:06,
University of Milano at Bicocca, July 2004, http://www.lta.disco.unimib.it/doc/ei/pdf/
lta.2004.06.pdf

[19] Open Issues in Self-Inspection and Self-Decision Mechanisms for Supporting Complex
and Heterogeneous Information Systems, M. Colajanni, M. Andreolini and R. Lancellotti,
Proceedings of. Int’l SELF-STAR 2004 [13], http://www.cs.unibo.it/self-star/papers/
colajanni.pdf

[20] Dynamic Configuration of Resoubrce-Aware Services, V. Poladian, J. Pedro Sousa, D.
Garlan, and M. Shaw, Proceedings of the 26th International Conference on Software
Engineering (ICSE), Edinburgh, Scotland, May 2004.

[21] Self-organising software architectures for distributed software systems, I. Georgiadis, J.
Magee, and J. Kramer. In proceedings of the first workshop on Self-healing systems,
pages 33-38. ACM Press, 2002.

[22] Architecture style requirements for self-healing systems, M. Mikic-Rakic, N. Mehta, and
N. Medvidovic. In proceedings of the first workshop on self-healing systems, pp. 49-54,
ACM Press, 2002.

[23] An architecture-based approach to self-adaptive software, P. Oreizy, M. Gorlick, R.
Taylor, D. Heimhigner, G. Johnson, N- Medvidovic, A. Quilici, D. Rosemblum, and A.
Wolf. IEEE Intelligent Systems, 14(3):54-62, May/Jun 1999.

[24] An infrastructure for multiprocessor run-time adaptation, J. Appavoo, K. Hui, M.
Stumm, R. Wisniewski, D. Da Silva, O. Krieger, and C. Soules. In proceedings of the
first workshop on self healing systems, pages 3-8, ACM Press, 2002.

[25] Model-based adaptation for self-healing systems, D. Garlan, B. Schmerl. In proceedings
of the first workshop on self-healing systems, pages 27-32, ACM Press, 2002.

[26] Using process technology to control and coordinate software adaptation, G. Valetto and
G. Kaiser. Proc 25th international conference on software engineering, pp. 262-272, IEEE
Computer Society, 2003.

[27] Principles of transaction-oriented database recovery, T. Haerder and A. Reuter. ACM
Computer Surveys, 15(4):287-317, 1983.

 A Self-healing Approach 13

[28] Understanding self-healing in service-discovery systems, C. Dabrowski and K. Mills. In
proceedings of the first workshop on self-healing systems, pages 15-20, ACM Press,
2002.

[29] Understanding code mobility, A. Fuggetta, G. Picco and G. Vigna. IEEE Transactions on
Software Engineering, 24(5):342-361, 1998.

[30] Containment units: a hierarchically composable architecture for adaptive systems, J.
Cobleigh, L. Osterweil, A. Wise, and B.S. Lerner. Proc. of 10th ACM SIGSOFT
symposium on Foundations of Software Engineering, pages 159-165, ACM Press, 2002.

[31] Multithreaded Java program test generation, E. Farchi, Y. Nir, G. Ratsaby and S. Ur:
IBM Systems Journal 41(1): 111-125 (2002)

[32] Concurrent Bug Patterns and How to Test Them, E. Farchi, Y. Nir and S. Ur.,
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS'03), p. 286b

[33] Behavior Capture and Test: Automated Analysis of Component Integration, L. Mariani
and M. Pezzè, Proceedings of the 10th IEEE International Conference on Engineering of
Complex Computer Systems, IEEE Computer Society, Shangai (China), 16-20 June,
2005.

[34] Automated and Adaptive Threshold Setting: Enabling Technology for Autonomy and Self
Management, D. Breitgand, E. Henis and O. Shehory, Proc. 2nd Intl. Conference on
Autonomic Computing (ICAC'05), Seattle, June 2005.

Using Peer-to-Peer Protocols to Enable Implicit

Communication in a BDI Agent Architecture

Klaus Fischer1, Jörg P. Müller2,3, Fabian Stäber3, and Thomas Friese3

1 DFKI GmbH
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

klaus.fischer@dfki.de
2 Dept. of Computer Science

Clausthal University of Technology
Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany

joerg.mueller@tu-clausthal.de
3 Siemens AG, Corporate Technology, Information and Communications

Otto-Hahn-Ring 6, D-81739 München, Germany
{fabian.staeber.ext,th.friese}@siemens.com

Abstract. The objective of the research described in this paper is to ex-
tend current agent platforms in order to provide both explicit, message-
based and implicit, document-based communication and co-ordination
within a uniform framework, and to make this unified framework avail-
able for the agent-oriented design and enactment of business processes.
This is achieved by interfacing a BDI agent platform with an underly-
ing peer-to-peer (P2P) platform, where the P2P framework is used to
virtualize certain sections of the belief sets of the BDI agents; after a re-
view of existing approaches to integrate multiagent with P2P concepts,
a prototype technical realization is presented using two state-of-the art
platforms: the Jack BDI agent platform and the P2P Business Resource
Management Framework (BRMF) platform.

1 Introduction

With multiagent systems and technologies becoming more mature, they are find-
ing their way into business applications, such as business process management
(BPM) or collaborative product development (see [1], [2]). What makes multia-
gent system appealing both from a modeling and a runtime angle is their ability
to provide natural mappings to concepts usually found in BPM models, such as
organizations, roles, and goals, and their intrinsic support to flexible business
service composition and loosely coupled coordination and cooperation, as they
are often found in collaborative, cross-enterprise business environments.

However, there are some fundamental limitations in the level of support cur-
rent agent platforms can provide for the execution of business processes. In par-
ticular, popular platforms such as Jade1 or Jack Intelligent AgentsTM 2 base their
1 http://jade.tilab.com
2 http://www.agentsoftware.com.au

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 15–37, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 K. Fischer et al.

interaction models on the paradigm of message-based communication between
agents. This is well suitable for business processes that are clearly structured
according to e.g., FIPA3 interaction protocols [3]. Example for processes that
can be easily supported by today’s agent-based solutions are for example order
management or procurement processes, which are complex in that there is a
wealth of situation-dependent choices regarding the behavior of the individual
participants, but which are structured in that interaction follows clear rules and
protocols. However, today’s agent platforms and the traditional speech-act- and
protocol-based messaging are less suitable to model and support processes that
are less structured, and more event-based.

It is our claim that agent-based explicit messaging needs to be complemented
by an implicit, blackboard-style communication and coordination paradigm to
be able to support unstructured, document-centric and event-driven business
processes. In the collaborative product design use case, a suitable paradigm for
the interactions within the supplier network is that of a peer-to-peer (P2P)
organization where each party maintains copies of the documents or models in
question, and is notified when another party changes one of the documents.
The negotiation comes to an end when each party agrees to the current set of
documents available. The idea to describe a process by reactions to changes of
documents is radically different from traditional business process design.

The objective of the research described in this paper is to extend current
agent platforms in order to provide both explicit, message-based and implicit,
document-based communication and co-ordination within a uniform framework,
and to make this unified framework available for the agent-oriented design and
enactment of business processes. In particular, we found a suitable paradigm for
efficient implementation of implicit, decentral coordination and resource man-
agement within the P2P community.

In this paper we describe a first step towards combining the use of BDI agents
to model and enact CBPs process flows with the use of a P2P platform to
enable event- and document-driven ”publish-subscribe style” collaboration. In
doing so, we can provide architects of business application with the concepts
and tools to integrate both process-centric and event-/document-centric busi-
ness collaboration requirements within one unifying architecture. Technically,
the first step of this endeavor is achieved by interfacing a BDI agent platform
with an underlying P2P platform, where the P2P framework is used to virtual-
ize certain sections of the belief sets of the BDI agents; a technical realization
concept is presented using two state-of-the art platforms: the Jack BDI agent
platform and the P2P Business Resource Management Framework (BRMF)
platform.

The paper is structured as follows: In Section 2, we introduce the Collab-
orative Product Development (CPD) application used throughout this paper
to describe the concepts. Section 3 outlines related work in using multiagent
system and P2P concepts for business applications. In Section 4, existing ap-
proaches to combine agent and P2P computing are discussed, and the main

3 http://www.fipa.org

Using Peer-to-Peer Protocols to Enable Implicit Communication 17

aspects of an integration of the two concepts are presented. Section 5 describes
the overall concept of belief base virtualization; a sketch of the implementation
of the integration is provided in Section 6. Section 7 illustrates how our concepts
can be beneficially used in the collaborative product development application
from Section 2. The paper ends with a discussion of results and future research
opportunities.

2 Application Scenario: Collaborative Product
Development

In this section, we introduce a simple application scenario which we shall use
throughout the paper to illustrate the basic concept. The scenario is a simplified
version of a more complex application piloted in the context of the ATHENA
IP4. The scenario describes the the interaction between an Automotive Origi-
nal Equipment Manufacturer (OEM) and a large supplier network consisting of
first-, second- and nth-tier suppliers, in the process of Strategic Sourcing. Strate-
gic sourcing is an early step within Cooperative Product Development (CPD),
where Original Equipment Manufacturers set up strategic partnerships with the
larger (so-called first-tier) suppliers with the aim of producing specific subsys-
tems (e.g., powertrain, safety electronics) of a planned car series [4]. In the use
case considered for this paper, the Original Equipment Manufacturer (OEM)
issues Requests for Quotations (RfQs) to its first-tier supplier (1). The first-tier
supplier serves as a gateway to the supplier network; it reviews the specification
and negotiates conditions with second-tier suppliers (2) and checks the feasibil-
ity of the request. After that, the first-tier supplier issues a quote or suggests
changes to the OEM (3). This cycle is repeated until all parties agree on a fea-
sible specification. Finally, the quote is sent from the first-tier supplier to the
OEM.

Fig. 1. Use Case Scenario Collaborative Product Development (CPD)

4 http://www.athena-ip.org

18 K. Fischer et al.

On the OEM side we find a process-driven environment, implemented using
a standard collaborative process execution engine. On the supplier side, we find
second-tier suppliers joining and leaving the environment very dynamically. This
results in an event-driven collaboration paradigm being appropriate for commu-
nication and collaboration in the supply network, as opposed to the process
driven paradigm used for communication between the OEM and the (larger)
first-tier suppliers. In the remainder of this paper, we advocate a combination of
P2P and agent technologies on the supplier side, coping with the requirements
resulting from the dynamic, event-driven environment.

3 Background

3.1 BDI Agents for Business Process Modeling and Enactment

Business process management (BPM) is an application domain that has already
attracted significant interest of researchers in the area of MAS. Widely recog-
nized work on agent-based BPM was done for example in the ADEPT project
[5,6]. The importance and the level of recognition BPM has been receiving in
the MAS community is also reflected by a panel titled “Business Process Man-
agement: A Killer App for Agents?” held at International Joint Conference on
Autonomous Agents and Multiagent Systems in 2004.

What makes multiagent systems appealing both from a modeling and a run-
time angle is their ability to provide natural mappings to concepts usually found
in BPM models, such as organizations, roles, and goals, and their intrinsic sup-
port to flexible business service composition and loosely coupled coordination
and cooperation, as they are often found in collaborative, cross-enterprise busi-
ness environments [7]. Especially BDI agents were identified as a powerful vehicle
for the specification and the execution of business processes. For instance, Agen-
tis Software offers a BPM tool that is based on BDI agents.5 Thus, agent tech-
nologies have the potential to make BPM and business process execution more
flexible. In order to unleash this potential and to make it applicable to practical
business applications, model-driven development (MDD) techniques have been
proposed in the literature: agent technologies are to be used as an execution
platform for business process models that are defined at a platform independent
level [8,9]. The underlying idea is to transform models that are provided by en-
terprise or business process modeling tools (such as ARIS, Maestro, or MO2GO,
see [7]) into models that can be directly executed in the agent environment.

The starting point for this paper has been the observation that there are some
fundamental limitations in the level of support current agent platforms can pro-
vide for the execution of business processes. In particular, popular platforms such
as Jade or Jack base their interaction models on the paradigm of message-based
communication between agents. This is well suitable for business processes that
are clearly structured according to e.g., FIPA interaction protocols [3]. However,

5 http://www.agentissoftware.com/

Using Peer-to-Peer Protocols to Enable Implicit Communication 19

it is less suitable to model and support processes that are less structured, and
more event-based.

Examples for processes that can be easily supported by today’s agent-based
solutions are order management or procurement processes, which are complex
in that there is a wealth of situation-dependent choices regarding the behavior
of the individual participants, but which are structured in a sense that interac-
tion follows clear rules and protocols. Business standards like RosettaNet6 are
mostly focusing on this type of protocols. For instance, and coming back to the
application example from Section 1, communication between the car manufac-
turer (OEM) and the first-tier supplier, in which the OEM distributes the RfQ
and suppliers create and return bids, is a fairly well-structured business process,
which lends itself to modeling using a Contract-net like protocol [10].

An instance of a less structured process in the CPD example is the collaborative
revision of technical specifications of the RfQ and the joint creation of a bid by
the suppliers in the supplier network. Within this process, it is not at all clear nor
well-specified how long it will take to reach a mutually agreed state; partners may
communicate, suggest changes, make annotations at any point in time. In this case
it might be possible to describe the individual reactions to upcoming events, such
as changes made (suggested) to the model by a partner. However, the sequence of
the reactions will depend on the local behavior of each partner.

It is our claim that agent-based explicit messaging needs to be complemented
by an implicit, blackboard-style communication and coordination paradigm to
be able to support unstructured, document-centric and event-driven business
processes. In the collaborative product design use case, a suitable paradigm
for the interactions within the supplier network is that of a P2P organization
where each party maintains copies of the documents or models in question, and
is notified when another party changes one of the documents. The negotiation
comes to an end when each party agrees to the current set of documents available.
The idea to describe a process by reactions to changes of documents is radically
different from traditional business process design.

The following subsection provides an overview of existing P2P protocols and
their application in business process management. In Subsection 4 we describe
our basic approach towards integrating agent and P2P methods in a unified
framework, as well as related work in this area.

3.2 Peer-to-Peer Computing for Decentral Business Resource
Management

Over the past five years, and initially driven by Internet file sharing applications,
P2P computing has been rediscovered as a paradigm for decentral, robust, and
dynamic resource management. More recently, P2P protocols were successfully
used to enable decentral address lookup and network routing for IP telephony.
Taking a very rough categorization, the spectrum of P2P infrastructures can be
divided into two groups. One group uses some form of flooding mechanism to

6 http://www.rosettanet.org

20 K. Fischer et al.

relay requests for information to all nodes in an attempt to discover resources
provided by those nodes. Examples for this technology are the gnutella network
[11] and the JXTA open source project initiated by Sun Microsystems [12]. While
the flooding approach offers a flexible way to formulate information queries, it has
some drawbacks regarding the network traffic that is generated by a single search
request [13]. Additionally, a negative request for a certain piece of information
is no guarantee that the information is not available. Instead, the peer holding
the information could have been out of reach for the query which usually has a
limited lifetime and outreach to keep the system scalable.

The other group of middleware realizes a distributed information space that
is very similar to a distributed hash table (DHT). More strict query semantics
are offered by DHT systems where a query can be assumed to yield a result if
and only if a certain piece of information matching the query is stored among
the nodes forming the DHT. Such a definitive answer is required for business
applications built on top of such an information infrastructure. Therefore, we
selected a DHT based fabric as the foundation of the BRMF.

An information space offering DHT characteristics is realized by such projects
as Chord [14], Pastry [15] or Tapestry [16]. Those systems allow placing and re-
trieving objects based on the key associated with the object, but they do not
support complex XPath queries over the contents of stored XML fragments. The
Siemens-owned Resource Management Framework (RMF) developed by Siemens
[17] goes beyond those basic DHT mechanisms and offers functionality for the
storage, discovery, retrieval and monitoring (through subscription and notifica-
tion mechanisms) of arbitrary XML resources.

To the best of our knowledge, there is no unified system combining business
resource management and P2P data management, even though the lack of an
intermediary hub for business to business communication is an argument for the
adoption of a P2P model [18]. The PBiz model [19] extends the Chord routing
mechanism to map XML resource descriptions onto a P2P infrastructure. There
is no mapping of existing schema definitions into the PBiz system. Business
users operate directly on the P2P data model instead, relying on a generic query
interface. Also, no details are given on how the system should counter degener-
ation of the P2P index structure. A model to support business processes in a
P2P marketplace scenario is presented in [20]. This work focuses on defining the
meta model for market place based interaction without handling resources or a
concrete realization of such a system. In [21] a layered business object oriented
architecture is introduced supporting meta-modeling, object management, work-
flow management, directory services and communications. However, only a high
level description of the required subsystems based on a a centralized registry
model is given.

3.3 BRMF: The Business Resource Management Framework

In the following, we will briefly introduce the Business Resource Management
Framework (BRMF), which is a P2P based business collaboration platform
matching the requirements on the supplier side, and addressing some of the

Using Peer-to-Peer Protocols to Enable Implicit Communication 21

above-mentioned open research issues. For a more detailed description of BRMF,
we refer to [22], [23].

The BRMF implements a P2P lookup algorithm based on a distributed hash-
table. From the user’s point of view, the BRMF forms an abstract information
space, managing shared resources. Each resource in the information space is as-
sociated with one or more keywords. Using these keywords, business partners
can retrieve and modify resources. Moreover, business partners can issue sub-
scriptions for certain keywords in order to be notified if a new resource with the
same keywords is published or an existing one is changed.

Figure 2 gives an overview of the architecture of the BRMF. Moving bottom-
up, one can see that the BRMF is based on the Resource Management Frame-
work (RMF) [17], which is a generic API covering P2P overlays. The RMF
exposes methods to publish, subscribe and modify resources in the P2P infor-
mation space.

Fig. 2. Architecture of the Business Resource Management Framework (BRMF)

This infrastructure maintains the information space as an overlay network in
a decentral, self-organizing way, reducing the overhead of manual configuration
required when new partners join or leave the collaboration environment. The
BRMF is resilient to node failure. If one of the business partners leaves the
network, replicas of its resources are still kept in the information space for a
certain time, allowing continuation of the overall process.

On top of the RMF, the BRMF adds explicit support for dealing with business
objects. The Business Object Management Layer (BOML) provides a mapping
from arbitrary XML-based business documents into RMF resources and vice
versa. Moreover, the handling of keywords and XPath queries is simplified using
the BOML API. The exchange of documents among several business partners can
be implemented using the BRMF’s publish/subscribe mechanism. Confidential
communication is provided by a security layer [24]. THe third component shown

22 K. Fischer et al.

in Figure 2 is the Business Actor Management Layer (BAML) dealing with active
business objects like Web Services; this component will not be used for the scope
of the scenario presented in this paper.

4 Integrating Peer-to-Peer and Agent Concepts

4.1 Related Work

In this section we shall provide an overview of related work trying to bring
together the concepts of agents and P2P computing. From its conception in
the 1980s, multiagent systems were always perceived to be P2P organizations,
i.e., collections of autonomous components capable of communication. Thus, the
metaphor of a multiagent system or architecture is very much compliant with
that of a P2P system or architecture. Broadly looking at the communication side,
it appears that the focus in multiagent systems research is very much on higher-
level aspects of coordination, cooperation, and negotiation in a goal-oriented
way, whereas communication in P2P systems serves lower level decentral resource
management purposes. Looking at the architecture of the individual agent, a rich
body of research is available (see e.g. [25] for an overview) describing possible
architectures of an agent as a proactive, re-active, and social entity.

Peer-to-peer computing on the other hand has largely focused on providing
protocols for robust and scalable decentral sharing, access, and management of
resources. As far as the internal structure or process logic of the individual peer
are concerned, P2P systems usually do not make any assumptions beyond the
necessity for a peer to implement certain interfaces e.g., for lookup operations.

Over the past few years, a number of different aspects relating agent and P2P
concepts were investigated in the literature. In particular, the workshop series
”Agents and Peer-to-Peer Computing” which has been held yearly since 2002
provides a good forum for articles relating these two concepts.

One general idea of using agents to add value to P2P systems is by providing
semantic information on top of a P2P architecture. In [26], the usage of a seman-
tic overlay network (SON) is proposed for the content-based routing of queries.
The approach relies on a global reference ontology (classification hierarchy).
Technical issues addressed in the paper are query and document classification,
the Layered SON algorithm allowing a peer to decide in which Semantic Overlay
Networks it wishes to be member, and strategies for searching in Layered SONs.
In [27], the authors describe a layered P2P architecture for semantic search and
data integration, where a network of conceptual peers (called SINodes) provide
data mediation functionality. The P2P network is supported by a multi-agent
system that forms the interface to the users by sharing and mapping ontologies
required to perform data integration. In this work, the term P2P is used in a
broad conceptual sense to describe the message-based interaction between the
SINodes. It does not entail the use of P2P techniques for decentral resource
management.

A second usage of agent technologies that was proposed in the literature con-
cerns the improvement of task management and routing (in a P2P grid context),

Using Peer-to-Peer Protocols to Enable Implicit Communication 23

as well as the agent-based implementation of different types of policies for man-
aging resources in P2P systems. E.g., [28] propose the use of mobile agents to
decentrally route (carry) tasks to computational nodes in a P2P grid environ-
ment. The paper provides a model for describing the short-term dynamics of
task distribution as well as the long-term dynamics of task-handling. In [29] the
authors propose the use of agent technology for the design and enforcement of
policies to guide policies for resource sharing in virtual P2P communities, such
as e.g. the Kazaa file sharing application. A formal model is provided for de-
scribing concepts such as agents, norms, resources, authorization and delegation
processes.

In [30], the authors take a different stance at the added value that agents can
bring to P2P computing. This overview paper raises some problem related to
control, authority, and ownership in P2P systems and discusses the applicability
of agent related concepts to provide solutions to these problems. In particular,
the authors argue that mechanism design can be applied to P2P trading systems,
that argumentation and negotiation schemas can be applied to P2P social choice
problems, and that concepts of electronic institutions, norms, rules and policy
languages are applicable to context management in P2P ubiquitous computing
problems. Yet, this good overview paper does not make a more specific technical
contribution.

To our knowledge, an area that so far has not been covered in the literature
is the integration of agents and P2P computing for business-related applica-
tions, such as business process management and computer-supported collabora-
tive work. In [31] the authors’ view on the relationship between agents and P2P
technologies is that the agent paradigm can be superimposed on peer architec-
tures and that

the agent paradigm and P2P computing are complementary concepts in
that cooperation and communication between peers can be driven by the
agents that reside in each peer. Agents may initiate tasks on behalf of
peers.

This view is very much compliant with our approach where agents act as software
entities responsible for coordination, control, decision making and interaction
e.g. in cross-enterprise business process enactment and monitoring, and where
an underlying P2P infrastructure is used for virtualization of business resources.
In the next section, we outline our basic idea to realize this type of integration
between the two paradigms.

4.2 Discussion of Main Concepts

This section describes our conceptual views on agents and P2P computing as well
as a potential useful integration. To summarize, the notion of P2P computing has
so far been used in two different directions, the first of which is that of a general
paradigm for decentral communication, abstraction of client-server concept. In
this sense, a multiagent system is a P2P system.

24 K. Fischer et al.

The second, more specific direction views a P2P system as a class of algorithms
and protocols for decentral resource management. This second direction is our
view on P2P computing. The focus of this view is on sharing (v̀irtualization)̀,
synchronization, and discovery of documents, information objects, and services.
Taking this stance, there are clear differences and even complementarity between
agent/multiagent concepts and P2P systems.

Firstly, while agents traditionally communicate using explicit (asynchronous)
messaging (e.g., based on FIPA interaction protocols [3], P2P systems such as
the Business Resource Management Framework discussed in Section 3.3 create a
virtual P2P information space, that can act as a kind of blackboard systems en-
abling implicit and event-based communication and synchronization. As outlined
in the introduction, we believe that the combination of these two communication
styles can provide an immense value for numerous business applications by sup-
porting process-driven as well as event-driven, document-centric environments,
and their integration.

Secondly, as quoted by [31] above, the ability of agents to reveal flexible be-
havior, and to provide methods for coordination, negotiation, and policies for
efficient resource allocation e.g. by means of market mechanism design [30] com-
plements the ability of P2P protocols such as Chord [14] or Kademlia [32] to
provide efficient, scalable, and truly decentralized resource management features
that have been proven in large-scale applications – which notably sets P2P sys-
tems apart from the level of achievement reached by today’s FIPA compliant
agent platforms. Thus, agents and multiagent systems can clearly benefit from
P2P technologies.

In contrast, P2P platforms can also benefit from functionality provided by
agents in a number of ways. One way is the ability to use agents in order to
express behavior within a computational peer. In a business context, an agent
can maintain and enact a business process model. Another aspect to be con-
sidered is the use of agents to introduce semantic models for dynamic and au-
tomated service selection and service composition. Also, agents can add to a
P2P platform the ability for explicit and asynchronous, message- and speech-act
based communication, as well as negotiation capabilities and team coordination
support.

In this work, we propose to combine the use of robust decentral P2P index-
ing structures, such as Distributed Hashtable for resource discovery and resource
sharing with an agent-based layer responsible for knowledge representation, busi-
ness process enactment and monitoring.

In particular, we start from a specific class of agents, Belief-Desire-Intention
(BDI) agents ([33]. As a first step to integrating BDI agents with P2P resource
management, we shall present a concept to allow BDI agents to make (i.e.,
virtualize) well-defined sections of their belief base accessible to other agents (e.g.
in a team), and to synchronize their beliefs by means of a P2P infrastructure.
This concept – which we call belief base virtualization, as well as an outline of
its implementation, and an example of its use are described in the following
sections.

Using Peer-to-Peer Protocols to Enable Implicit Communication 25

5 Belief Base Virtualization: Concept

5.1 Basic Concepts

BDI Agents. As discussed in Section 4, our approach to integrate P2P and
agent technologies is to view the P2P network as a shared information or proba-
bly more appropriate knowledge space. Knowledge in an agent is represented and
stored within a belief base. BDI (belief, desire, intention) agents are the most
widely discussed type of agents when reasoning about knowledge and action in
this context is investigated. A straightforward idea to integrate the knowledge
in the P2P network with BDI agents is to maintain within an agent a set of
beliefs that represents the shared knowledge. Then, each agent acts as a peer in
a BRMF P2P network (see Section 3.3).

The communication in BRMF is implemented via the BRMF’s publish / sub-
scribe mechanism. In order to subscribe a keyword, participants in the BRMF
issue a subscription resource for that keyword. Whenever a resource is published
in the BRMF, the peer being responsible for that resource checks the availabil-
ity of subscription resources with the same keyword. For each subscription, the
issuers of that subscription is notified.

This yields two requirements for the implementation of a shared belief base.
First, publish/subscribe implements a one-to-many communication, where the
sender does not know exactly how many recipients are subscribed for a message.
Second, search functions are bound to keywords. Complex subscriptions, like
ontological queries, are not yet supported by the BRMF registrar component.

Fig. 3. Basic Building Blocks of BDI Agents

Figure 3 explains the basic structure of a BDI Agent. Because we want to be
as concrete as possible we refer to Jack Intelligent Agents as a development tool
for BDI agents and explain our approach with the concepts that are available in
Jack. The building block of a BDI agent are the agents belief base and a library

26 K. Fischer et al.

of plans. The third concepts to mention are events. The idea is that an BDI
agent is able to react to a set of predefined events and it does so by checking the
plan library to look for a plan that is relevant for the event. Additionally to the
relevance condition, which puts constraints on the events a specific plan might
react to, one can specify a context condition which needs to evaluate to true to
render the plan applicable as a reaction to a specific event. The context condition
is a logical expression, which most likely extracts information from the agent’s
belief base. The beliefs are structured according to a relational data model. This
means that each belief set forms a relation which is defined by its name and a
set of attribute value pairs where the values might be of a simple type, e.g. int,
float, string, etc., or the complex type Object. For each belief set a set of queries
can be specified where simple queries are used to basically extract information
from existing belief set elements and complex queries are logical combinations
of simple queries. A simple query can for example ask whether a belief element
that matches a specific pattern is present in the belief set or not. If the belief
set is defined to be closed world the answer to the query evaluates to true in
case a belief is present that matches the pattern specified in the query otherwise
the query evaluates to false. In case the belief set is specified to be of type open
world, the result is undefined in the case that no belief is present that matches
the specified pattern.

BRMF integration requirements. In Section 3.3 we introduced the BRMF
as a P2P based business collaboration platform, being self-organizing, and re-
silient to node failure. In this section, we will focus on the metamodel offered by
the BRMF implementation and highlight the requirements when implementing
a virtualized belief base on top of the BRMF.

As shown in Section 3.3, each resource in the BRMF is associated with one
or more keywords. Access to the resources is implemented through the BRMF’s
registrar interface. There are several kinds of registrars. For the purpose of im-
plementing a sharable belief base, we focus on the strict registrar, which is an
implementation of the standard lookup in distributed hashtables. The strict reg-
istrar offers exact searches for known keywords. It is still an open research topic
to implement more generic registrars, enabling searches for semantically rich
queries, like ontological queries.

The communication in BRMF is implemented via the BRMF’s publish / sub-
scribe mechanism. In order to subscribe a keyword, participants in the BRMF
issue a subscription resource for that keyword. Whenever a resource is published
in the BRMF, the peer being responsible for that resource checks the availabil-
ity of subscription resources with the same keyword. For each subscription, the
issuers of that subscription is notified.

This yields two requirements for the implementation of a sharable belief base.
First, publish/subscribe implements a one-to-many communication, where the
sender does not know exactly how many recipients are subscribed for a mes-
sage. Second, communication is bound to keywords. Complex subscriptions, like
ontological queries, are not supported.

Using Peer-to-Peer Protocols to Enable Implicit Communication 27

Fig. 4. Overall integration architecture

5.2 Conceptual Architecture

Figure 4 illustrates the basic conceptual integration of the agent platform with
the BRMF. Agents can communicate with each other in two ways: By exchanging
messages, and via virtualized shared objects maintained in the P2P information
space (1). The latter form of communication is employed to implement belief
base virtualization.

First, an agent will decide to share some parts of a belief base with other
agents. In doing so, it will use the BRMF publish function to publish the cor-
responding belief sets (step 2 in Figure 4). Other agents can now access the
virtualized belief base using the BRMF search method and automatically re-
ceive change events on the belief sets by means of the BRMF subscribe method
(step 3). In case the owner of the published belief base changes the belief, all
subscribed agents will receive change events as callbacks via the BRMF (step 4).
Agents can then start event handler routines to initiate appropriate action. This
way, the P2P information space allows agents to synchronize certain parts of
their belief bases in an efficient and elegant manner.

As we shall see in the following section, the interaction between the BRMF
and the Jack agent framework is implemented using a wrapper class which makes
the BRMF accessible to a Jack agent and which can perform callbacks on the
Jack agent. From the BRMF’s point of view, the wrapper class is an application
using the standard BRMF interface. The wrapper implementation is described
in detail in Section 6.

28 K. Fischer et al.

6 Belief Base Virtualization: Implementation

This section outlines an implementation of the concept of belief base virtualiza-
tion described in Section 5. We discuss the implementation based on the BDI
agent platform Jack and the P2P platform BRMF (Business Resource Manage-
ment Framework).

6.1 The Jack Agent Platform

Jack Intelligent AgentsTM is one of the most sophisticated tools for the design of
BDI agents. The tool was developed by Agent Oriented Software7. In this paper,
we concentrate on the concepts that are relevant for the paper and refer to the
Jack documentation which is available from the Web pages for further details.

In Jack agents are composed of components: belief data, capabilities, events,
and plans8. In the context of using a P2P middleware to build a shared be-
lief space among different agents, the agents’ belief data is the most prominent
concept that is of interest for this paper. Jack takes a relational approach to
structure the beliefs of an agent. Each belief set is a relation with a name—
most likely the name of the domain concept the beliefs in the belief set should
represent—an a list of fields, i.e. attributes of the domain concepts. Fields have
types which specify which kind of information can be stored in a specific field.
Fields can have simple types like for example boolean, char, float, int etc. If a
more complicated structure is to be stored in a field, the generic type Object
must be used. The idea is to store documents from BRMF as objects in a field
of a belief set. For publishing these objects, it is very helpful that Jack allows
to specify callbacks which are called automatically, as individual beliefs are cre-
ated or modified in the belief set. This means that it is possible to allow the
agent to read and manipulate the data in the belief set without having to deal
with the underlying synchronization of the changes with the information in the
BRMF.

However, only information that is entered into the belief set by the agent
can be passed on to the BRMF by the callbacks. If information is changed
in the BRMF other concepts are needed to make it available for the agents.
Each agent has to register with BRMF specifying what information it wants to
subscribe to. In case an object is changed to which a specific agent did subscribe,
BRMF invokes a callback method in the agent’s context, passing the changed
document as a parameter. In the context of the callback method that belongs
to the agent it is possible to post an event to which the agent reacts with one
of its plans. An event can be seen something similar to an internal message the
agent can use to pass information from one piece of code to another. Events are
specified by event types. Different types of events can cause different reactions
regarding specific plans. In the context of this paper events are basically used
to pass on the information from the BRMF to the agents belief base. For this

7 http://www.agent-software.com.au
8 Interesting enough, none of these components are mandatory.

Using Peer-to-Peer Protocols to Enable Implicit Communication 29

the most simple event type is sufficient. Whether more complicated event types
like for example BDIGoalEvents can be usefully applied in this application will
depend on the application domain. The event that is posted by the method
called from BRMF carries the changed document as an object in one of its
fields.

The plan that reacts to the event posted by the method called from the BRMF
can first of all check on the object that represents the modified document. It
can further span off activities within the agent as a reaction to the changed
documents. Eventually, the updated object should of course find its way into the
belief set that takes up all objects, i.e., documents, that are shared between the
BRMF and the agents.

6.2 Implementation of a Shared Belief Base

In Section 5 we analyzed the requirements when implementing a shared belief
base on top of the BRMF. We learned that BRMF enables communication via
publishing and subscribing resources. In this section, we will show how such a
virtualized belief base can be represented in the BRMF information space, and
how notifications in the BRMF are mapped to events in the Jack agent platform.

The virtualized belief base is a set of beliefs, just as BRMF information space
is a set of resources. Thus, it is straightforward to implement the elements of
the shared belief set as resources in the information space. Beliefs in Jack are
tuples consisting of one or more keys and one or more values. When the beliefs
are transformed into BRMF resources, the keys are used as keywords in the
BRMF. The resources are published once for each keyword. The payload of the
resources consists of the complete list of all keywords and all values. That way,
an original Jack belief can be restored when a copy of a resource is retrieved
from the BRMF information space.

While Jack beliefs can be implemented one-to-one as resources in the BRMF,
it is not possible to find a one-to-one mapping between Jack’s events and BRMF
notifications. In the BRMF, there are only three kinds of notifications: Add, Up-
date, and Remove. These notifications are available for each keyword subscribed.
In Jack, it is possible to implement arbitrary custom event types. When inte-
grating Jack and BRMF, this feature must be restricted, and only the BRMF’s
notifications can used as Jack events. That means, that an Agent’s plan must
only handle an Add, Update, and Remove event for each subscribed keyword.

6.3 Bootstrapping

The best place to put the initialization code for BRMF for each agent is the
agent’s constructor method. As a first step, the agent has to make sure that
the local agent platform is part of the P2P information space by calling the
BRMF init method. In the constructor method the binding between an agent
and a BRMF wrapper object are constructed, resulting in the following general
constructor of the BRMFWrapper.

30 K. Fischer et al.

public BRMFWrapper(Agent a){
BRMF.init();
this.agent=a;
agent.setBRMFWrapper(this);

}

However, the agent does not receive any documents unless it subscribes for them
in the BRMF. To access the content of documents of BRMF the agent needs know
know the structure of these documents; as explained in Section 6.1, these struc-
tures are introduced into the agent model by a dictionary and external classes that
represent the structures in the dictionary. However, this information as well as the
specifications which documents the agent should subscribe to and how to react to
changes to these documents establish domain-specific knowledge. An appropriate
way to specify this information within an agent is to store it into two types of plans
in the plan library: plans that appropriately subscribe to BRMF documents, and
plans that specify the reaction to specific updates of specific documents. There-
fore, the BRMF wrapper provides a method to subscribe to new documents in the
P2P information space and implements the appropriate event handler interface to
receive such resources and notify the agent:

public void subscribe(Sring[] keywords,String structuralQuery){
BRMF.subscribe(keywords,structuralQuery,this);

}
public void onEvent(Event e){
...

}

While the subscription actions might very well be part of the specification of a
business process, the reactions to the changes are not likely to follow the usual
sequencing of a business process and is therefore difficult to represent directly
on the level of the business process. The better view to this is to regard the
individual plans in this behavior description as stimulus-response patterns to
individual update events coming from the BRMF.

If we use one belief set type with the structure (BRMF key: integer value:
Object) we first of all have to define this belief set type together with all call-
backs for creation, update and deletion of facts. The belief set type can then be
introduced as named data in any desired agent.

6.4 Event Creation and Propagation

In the following, the integration of BRMF and the Jack agent platform re-
garding the creation and propagation of events are described. Previously, the
BRMFWrapper was introduced as the component bridging the P2P system and
the agents in the agent platform. Two basic actions of the agents are distin-
guished: publishing a new belief into the shared belief base and updating an
existing belief. For each of the actions there are two directions of informa-
tion flow from the wrapper perspective. Either the wrapped agent publishes or

Using Peer-to-Peer Protocols to Enable Implicit Communication 31

updates a belief, and the new belief must be propagated as a new resource in
the P2P information space. In the other direction, a new or updated resource
becomes available in the information space, and the wrapped agent must be
notified of the new belief.

Each BRMF resource object held by the wrapper is associated with a unique
identifier, used in interactions between the agent and the wrapper. Both event
types are handled in the wrapper’s onEvent method that was registered with
the BRMF and the internal identifier for the resource is used in the interaction
between the agent and the wrapper.

public void onEvent(Event e){
Resource r=e.getResource();
if (e.isPublishEvent()){
Identifier i=createIdentifier(r);
agent.addBelief(i,r.getContent());
r.addUpdateListener(this);

} else if (e.isUpdateEvent()){
Identifier i=getIdentifier(r);
agent.updateBelief(i,r.getContent());

}
}

To enable explicit propagation of updates or new beliefs by the agent, corre-
sponding publish and update methods are provided by the wrapper.

public void update(Identifier i,String content) {
Resource r = lookupResource(i);
r.setContent(content);
r.commitUpdates();

}

public Identifier publish(String content) {
Resource r = new Resource();
r.setContent(content);
Identifier i = createIdentifier(r);
return i;

}

Currently, the update method is explicitly limited to the original creator of
a resource, concurrent update of the resource is not supported. This meets the
requirements of our use case, which will be discussed in the next section.

7 Application: Automotive Collaborative Product
Development

This section demonstrates the integration of Jack and BRMF for belief set vir-
tualization using the example application of Automotive collaborative product
development (CPD) introduced in Section 1.

32 K. Fischer et al.

In the use case scenario, the first-tier and second-tier suppliers are each rep-
resented by Jack agents. The communication between the agents is implemented
via a virtualized belief base shared through the BRMF information space. In
this section we will show how the interactions in the use case are mapped into
events in the combined agent and P2P environment.

A new collaborative product design phase is started when the first tier supplier
receives a RfQ. The first-tier supplier subsequently publishes sub-RfQs into the
P2P information space, for each material to be ordered by second-tier suppliers.
The second-tier suppliers are subscribed for their respective keywords and are
notified of the publish event in the BRMF. The agent’s BRMF wrapper adds
the resource into the agent’s belief set. This triggers the execution of a plan in
the agents, which is the starting point for the internal business process of the
second-tier supplier.

Finally the second-tier suppliers publish Quote documents into the shared
belief base, upon which the first-tier supplier is subscribed. These quote docu-
ments may contain change requests to the technical specifications. In reaction
to the Quote the first-tier supplier either accepts the quote or updates the RfQ
resource. This cycle is repeated until the first-tier supplier settles for a quote.

As an example interaction, a first-tier supplier might publish an RfQ for an
Air Bag Inflator made of steel.

<RawMaterials>
<SingleMetallicRawMaterials>
<MaterialName>steel</MaterialName>
<MaterialSpecification>steel</MaterialSpecification>
<InterestedSubPart>AirBag Inflator</InterestedSubPart>

</SingleMetallicRawMaterials>
</RawMaterials>

Now assume that a second-tier supplier from the metallic industry is sub-
scribed for parts in the automotive industry made of steel, and is thus notified
about the new quote. The sales engineer of the second-tier supplier processes
the quote and proposes magnesium as an alternative material. This alternative
material is included in the quote published by the second-tier supplier.

<Alternative>
<SingleMetallicRawMaterials>
<MaterialName>carbon</MaterialName>
<MaterialSpecification>carbon</MaterialSpecification>
<InterestedSubPart>AirBag Inflator</InterestedSubPart>

</SingleMetallicRawMaterials>
</Alternative>

In reaction to this, the first-tier supplier may accept the alternative material and
update its RfQ with a new material specification.

Using Peer-to-Peer Protocols to Enable Implicit Communication 33

After the technical negotiation phase is finished and all partners agreed on a
specification, the business partners start a second negotiation phase negotiating
the price of the part.

At the agent’s side, the structure of the documents which are passed on be-
tween the agents and BRMF is described by a Jack dictionary. The dictionary
entries corresponding the the above fragments of BRMF documents are

<Class :name "RawMaterials"
:fields (
<Field :name "SingleMetallicRawMaterials"
:type :class :subtype "ST_SingleMetallicRawMaterials">

)
>
<Class :name "ST_SingleMetallicRawMaterials">

:fields (
<Field :name "MaterialName" :type :string>
<Field :name "MaterialSpecification" :type :string>
<Field :name "InterestedSubPart" :type :string>
)

>

and

<Class :name "Alternative"
:field (
<Field :name "SingleMetallicRawMaterials"
:type :class :subtype "ST_SingleMetallicRawMaterials">

)
>

The structures for the dictionary entries can be directly extracted from a XML
schema definition in an automated manner. Although Jack supports the seri-
alization and deserialization of its internal objects into XML documents, it is
unfortunately not the case that this serialization would directly correspond to
the XML documents directly derived from the XML schema specification. One
needs to apply an XSLT transformation to convert one into each other to guar-
antee interoperability.

The type descriptions in the Jack dictionary are introduced as external classes
in Jack which means that the specified types are directly accessible for the agents.
Corresponding to the concrete instances specified above an agent could use

RawMaterial rm = new RawMaterial();
rm.SingleMetallicRawMaterials.MaterialName = "steel";
rm.SingleMetallicRawMaterials.MaterialSpecification = "steel";
rm.SingleMetallicRawMaterials.InterestedSubPart = "AirBag Inflator";

and

34 K. Fischer et al.

Alternative alt = new Alternative();
alt.SingleMetallicRawMaterials.MaterialName = "carbon";
alt.SingleMetallicRawMaterials.MaterialSpecification = "carbon";
alt.SingleMetallicRawMaterials.InterestedSubPart = "AirBag Inflator";

The agent either asserts the object as a belief set entry into its BRMF belief set
from which it is automatically published to BRMF from the belief set’s update
callback or the agents gets the object from BRMF where BRMF calls the agents
update method which send the agent an event that contains the object. In the
latter case it is in the responsibility of the plan that reacts to the incoming
event to enter the object as a belief set entry into the agent’s BRMF belief
set. However, this gives the agent the chance to reject updates of objects that
come from BRMF risking inconsistency of local beliefs regarding the state of
corresponding objects in BRMF.

8 Discussion and Outlook

The main contribution of this paper is the description a concept (including a
proof-of-concept implementation) for an integration of multiagent and P2P con-
cepts for business process management application. The concept provides ap-
proaches for (1) integrating process-centric with event-centric modeling at the
business process level; (2) extending ”explicit” message-based agent communi-
cation by implicit communication based on shared objects at the technical level;
and (3) integrating P2P protocols with a BDI agent architecture to enable belief
set virtualization across agents, agent teams, and agent platforms.

To our knowledge, the paper constitutes the first published work on combin-
ing agent and P2P concepts for business process management. Topics for future
work (see Section4 for a more detailed description of related work). It focuses on
a single aspect of decentral resource management and implicit communication
within and across a multiagent system. Future work will examine other aspects
where agent and P2P computing can be usefully integrated. One prominent area
is that of modelling support, including applying model-driven development con-
cepts to automatically derive agent and P2P implementations starting from a
business level specification of the required process / behavior. This will in par-
ticular require more work at the P2P side to refine the metamodel and provide
necessary model transformations to create BRMF models directly from e.g., a
PIM4SOA representation [34], as well as extensions to the current Jack meta-
model to create the necessary callbacks from a PIM-level P2P model. Another
area of concern lies in distributed transaction control issues, i.e., how to main-
tain ACID properties on belief sets. In this respect, the current approach relies
on a simplifying restriction imposed by the BRMF, such that every published
resource has an owner and can only be modified via the owner. Lifting this
restriction will make transaction control mechanisms very important.

Using Peer-to-Peer Protocols to Enable Implicit Communication 35

Finally, an area of future research will be to study extending the ideas of belief
base virtualization to other artifact of a BDI agent’s internal state to provide
more powerful support of MAS concepts such as shared goals or intentions.

Acknowledgments

Part of the work reported in this paper is funded by the E.C. within the ATHENA
IP under the European grant FP6-IST-507849. The paper does not represent the
view of the E.C. nor that of other consortium members, and the authors are
responsible for the paper’s content.

References

1. Müller, J.P., Bauer, B., Friese, T., Roser, S., Zimmermann, R.: Software agents
for electronic business: Opportunities and challenges (2005 re-mix). In Chaib-
Draa, B., Müller, J.P., eds.: Multi-agent-based supply chain management. Studies
in Computational Intelligence. Springer-Verlag (2006) 63–102

2. Luck, M., McBurney, P., Shehory, O., Willmott, S., eds.: Agent Technology: Com-
puting as Interaction. A Roadmap for Agent-Based Computing. AgentLink (2005)

3. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A formalism for specifying multia-
gent software systems. International Journal of Software Engineering and Knowl-
edge Engineering (IJSEKE) 11 (2001) 207–230

4. Stäber, F., Müller, J.P., Sobrito, G., Bartlang, U., Friese, T.: Interoperability
challenges and solutions in automotive collaborative product development (2007)
Submitted to 3rd International Conference on Interoperability for Enterpris Soft-
ware and Applications (I-ESA’2007).

5. Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Odgers, B.: Autonomous
agents for business process management. Int. Journal of Applied Artificial Intelli-
gence 14 (2000) 145–189

6. Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Odgers, B., Alty, J.L.:
Implementing a business process management system using ADEPT: A real-world
case study. Int. Journal of Applied Artificial Intelligence 14 (2000) 421–465

7. Greiner, U., Lippe, S., Kahl, T., Ziemann, J., Jaekel, F.W.: Designing and im-
plementing cross-organizational business processes - description and application
of a modelling framework. In: Enterprise Interoperability: New Challenges and
Approaches, Springer-Verlag (2007) To Appear

8. Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesæter, B., Berre, A.J., Zinnikus, I.:
Meta-models, models, and model transformations: Towards interoperable agents.
In: Multiagent System Technologies, Proc. of the 4th German Conference MATES
2006, Erfurt, Germany, LNAI 4196, Springer-Verlag, September 2006. (2006)
123–134

9. Ziemann, J., Ohren, O., Jaekel, F.W., Kahl, T., Knothe, T.: Achieving enter-
prise model interoperability applying a common enterprise metamodel. In: Enter-
prise Interoperability: New Challenges and Approaches, Springer-Verlag (2007) To
Appear

10. Smith, R.G.: The contract net protocol: High-level communication and control
in a distributed problem solver. IEEE Transactions on Computers C-29 (1980)
1104–1113

36 K. Fischer et al.

11. Wikipedia: Entry on Gnutella (2006) http://en.wikipedia.org/wiki/Gnutella.
12. Gong, L.: JXTA: A Network Programming Environment. IEEE Internet Comput-

ing 5 (2001) 88–95
13. Ritter, J.: Why Gnutella Can’t Scale. No, Really (2001) http://

www.darkridge.com/~jpr5/doc/gnutella.html .
14. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications. In: Proceedings of
the ACM SIGCOMM ’01 Conference. (2001)

15. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware), Heidelberg,
Germany (2001) 329–250

16. Zhao, B.Y., Kubiatowicz, J., Joseph, A.: Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing. Technical report, UCB/CSD-01-1141
(2001)

17. Rusitschka, S., Southall, A.: The resource management framework: A system for
managing metadata in decentralized networks using peer-to-peer technology. In:
Agents and Peer-to-Peer Computing. Volume 2530 of Lecture Notes in Computer
Science., Springer (2003) 144–149

18. Bussler, C.: P2P in B2BI. In: Proceedings of the 35th Annual Hawaii International
Conference on System Sciences. (2002) 302

19. Chen, S., Wu, Z., Zhang, W., Ma, F.: PBiz: An E-business Model Based on Peer-
to-Peer Network. In: Proceedings of Grid and Cooperative Computing, Second
International Workshop, Shanghai, China (2003) 404–411

20. Schmees, M.: Distributed digital commerce. In: Proceedings of the 5th international
conference on Electronic commerce, ACM Press (2003) 131–137

21. Karakaxas, A., Zografos, V., Karakostas, B.: A Business Object Oriented Layered
Enterprise Architecture. In: Proceedings of the 11th International Workshop on
Database and Expert Systems Applications. (2000) 807

22. Friese, T., Müller, J.P., Freisleben, B.: Self-Healing Execution of Business Pro-
cesses Based on a Peer-to-Peer Service Architecture. In: Proceedings of the 18th
International Conference on Architecture of Computing Systems. Volume 3432 of
Lecture Notes in Computer Science., Springer-Verlag (2005) 108–123

23. Friese, T., Müller, J., Smith, M., Freisleben, B.: A robust business resource manage-
ment framework based on a peer-to-peer infrastructure. In: Proc. 7th International
IEEE Conference on E-Commerce Technology, IEEE Press (2005) 215–222

24. Stäber, F., Bartlang, U., Müller, J.P.: Using Onion Routing to Secure Peer-to-
Peer Supported Business Collaboration. In Cunningham, P., Cunnigham, M., eds.:
Exploiting the Knowledge Economy: Issues, Applications and Case Studies. Vol-
ume 3., IOS Press (2006) 181–188

25. Müller, J.P.: The design of intelligent agents. Volume 1177 of Lecture Notes in
Artificial Intelligence. Springer-Verlag (1996)

26. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for P2P systems. In
Moro, G., Bergamaschi, S., Aberer, K., eds.: Agents and Peer-to-Peer Computing.
Volume 3601 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2005)
1–13

27. Bergamaschi, S., Fillottrani, P.R., Gelati, G.: The SEWASIE multi-agent system.
In Moro, G., Bergamaschi, S., Aberer, K., eds.: Agents and Peer-to-Peer Comput-
ing. Volume 3601 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2005)
120–131

http://en.wikipedia.org/wiki/Gnutella
http://www.darkridge.com/~jpr5/doc/gnutella.html
http://www.darkridge.com/~jpr5/doc/gnutella.html

Using Peer-to-Peer Protocols to Enable Implicit Communication 37

28. Jin, X., Liu, J., Yang, Z.: The dynamics of peer-to-peer tasks: An agent-based
perspective. In Moro, G., Bergamaschi, S., Aberer, K., eds.: Agents and Peer-to-
Peer Computing. Volume 3601 of Lecture Notes in Artificial Intelligence., Springer-
Verlag (2005) 173–184

29. Boella, G., van der Torre, L.: Permission and authorization in policies for virtual
communities of agents. In Moro, G., Bergamaschi, S., Aberer, K., eds.: Agents and
Peer-to-Peer Computing. Volume 3601 of Lecture Notes in Artificial Intelligence.,
Springer-Verlag (2005) 86–97

30. Willmott, S., Puyol, J.M., Cortés, U.: On exploiting agent technology in the de-
sign of peer-to-peer applications. In Moro, G., Bergamaschi, S., Aberer, K., eds.:
Agents and Peer-to-Peer Computing. Volume 3601 of Lecture Notes in Artificial
Intelligence., Springer-Verlag (2005) 98–107

31. Moro, G., Ouksel, A.M., Sartori, C.: Agents and peer-to-peer computing: A promis-
ing combination of paradigms. In Moro, G., Koubarakis, M., eds.: Agents and
Peer-to-Peer Computing. Volume 2530 of Lecture Notes in Artificial Intelligence.,
Springer-Verlag (2003) 1–14

32. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based
on the xor metric. In: Peer-to-Peer Systems: Proceedings of the 1st International
Workshop on Peer-to-Peer Computing (IPTPS02). Volume 2429 of Lecture Notes
in Computer Science., Springer-Verlag (2002) 53–65

33. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture.
In Allen, J., Fikes, R., Sandewall, E., eds.: Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR’91),
Morgan Kaufmann publishers Inc.: San Mateo, CA, USA (1991) 473–484

34. Benguria, G., Larrucea, X., Elvesaeter, B., Neple, T., Beardsmore, A., Friess, M.:
A platform independent model for service-oriented architectures. In: Proc. 2nd In-
ternational Conference on Interoperability of Enterprise Software and Applications
(I-ESA’06), Springer-Verlag (2007) To appear

Part I

Asimovian Multiagents:

Applying Laws of Robotics to Teams of Humans
and Agents

Nathan Schurr1, Pradeep Varakantham1, Emma Bowring1, Milind Tambe1,
and Barbara Grosz2

1 Computer Science Department, University of Southern California
Los Angeles, California

{schurr,varakant,bowring,tambe}@usc.edu
2 Harvard University, Maxwell-Dworkin Laboratory, Room 249

33 Oxford Street, Cambridge, MA 02138
grosz@eecs.harvard.edu

Abstract. In the March 1942 issue of “Astounding Science Fiction”,
Isaac Asimov for the first time enumerated his three laws of robotics.
Decades later, researchers in agents and multiagent systems have be-
gun to examine these laws for providing a useful set of guarantees on
deployed agent systems. Motivated by unexpected failures or behavior
degradations in complex mixed agent-human teams, this paper for the
first time focuses on applying Asimov’s first two laws to provide be-
havioral guarantees in such teams. However, operationalizing these laws
in the context of such mixed agent-human teams raises three novel is-
sues. First, while the laws were originally written for interaction of an
individual robot and an individual human, clearly, our systems must
operate in a team context. Second, key notions in these laws (e.g. caus-
ing “harm” to humans) are specified in very abstract terms and must be
specified in concrete terms in implemented systems. Third, since removed
from science-fiction, agents or humans may not have perfect information
about the world, they must act based on these laws despite uncertainty
of information. Addressing this uncertainty is a key thrust of this paper,
and we illustrate that agents must detect and overcome such states of
uncertainty while ensuring adherence to Asimov’s laws. We illustrate the
results of two different domains that each have different approaches to
operationalizing Asimov’s laws.

1 Introduction

Recent progress in the agents arena is bringing us closer to the reality of multia-
gent teams and humans working together in large-scale applications [3,4,10,11,12].
In deploying such multiagent teams and making them acceptable to human team-
mates, it is crucial to provide the right set of guarantees about their behavior. The
unanswered question is then understanding the right set of guarantees to provide
in such teams.

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 41–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

42 N. Schurr et al.

In this paper, we focus on Asimov’s three laws of robotics from his science-
fiction stories that provide us a starting point for such behavior guarantees. We
do not claim that these laws are the only or best collection of similar rules.
However, the laws outline some of the most fundamental guarantees for agent
behaviors, given their emphasis on ensuring that no harm comes to humans, on
obeying human users, and ensuring protection of an agent. Indeed, these laws
have inspired a great deal of work in agents and multiagent systems already
[14,4,8]. However, in operationalizing these laws in the context of multiagent
teams, three novel issues arise. First, the key notions in these laws (e.g. “no
harm” to humans) are specified in very abstract terms and must be specified in
concrete terms in implemented systems. Second, while the laws were originally
written for interaction of an individual robot and an individual human, clearly,
our systems must operate in a team context. Third, since, in many realistic
domains, agents or humans may not have perfect information about the world,
they must act based on these laws despite information uncertainty and must
overcome their mutual information mismatch.

Indeed, as mentioned earlier, researchers have in the past advocated the use
of such laws to provide guarantees in agent systems [4,8,14]. However, previous
work only focused on a single law (the first law of safety) and in the process ad-
dressed two of the issues mentioned above: defining the notion of harm to humans
and applying the laws to teams rather than individual agents. The key novelty of
our work is going beyond previous work to consider the second of Asimov’s laws,
and more importantly in recognizing the fundamental role that uncertainty plays
in any faithful implementation of such a law. In particular, Asimov’s second law
addresses situations where an agent or agent team may or may not obey human or-
ders — it specifies that in situations where (inadvertent) harm may come to other
humans, agents may disobey an order. However, in the presence of uncertainty
faced either by the agents or the human user about each others’ state or state of
the world, either the set of agents or the human may not be completely certain of
their inferences regarding potential harm to humans. The paper illustrates that
in the presence of such uncertainty, agents must strive to gather additional infor-
mation or provide additional information. Given that the information reduces the
uncertainty, agents may only then disobey human orders to avoid harm.

To the best of our knowledge, this paper for the first time provides con-
crete implementations that address the three key issues outlined above in op-
erationalizing Asimov’s laws. Our implementations are focused on two diverse
domains, and thus require distinct approaches in addressing these issues. The
first domain is that of disaster rescue simulations. Here a human user provides
inputs to a team of (semi-)autonomous fire-engines in order to extinguish max-
imum numbers of fires and minimize damage to property. The real-time nature
of this domain precludes use of computationally expensive decision-theoretic
techniques, and instead agents rely on heuristic techniques to recognize situ-
ations that may (with some probability) cause harm to humans. The second
domain is that of a team of software personal assistant deployed in an office
environment to assist human users to complete tasks on time. The personal

Asimovian Multiagents: Applying Laws of Robotics to Teams 43

assistants face significant uncertainty in the observations they receive about the
status of the human users. Here, we use partially observable markov decision
problems (POMDPs) to address such uncertainty.

2 Human-Multiagent Systems

Increasingly, agents and agent teams are being viewed as assistants to humans in
many critical activities and changing the way things are done at home, at office,
or in a large organization. For example, as illustrated in [11], multiagent teams
can help coordinate teams of fire fighters in rescue operations during disaster
response. Furthermore, they are also being used as helping hand to humans
in an office setting for assisting in various activities like scheduling meetings,
collecting information, managing projects etc. Such a transformation seems a
necessity, because it relieves humans of the routine and mundane tasks and
allows them to be more productive and/or successful.

However, making such a transformation introduces many new challenges con-
cerning how the human and agents will interact. The primary challenge that
we focus on in this paper is that if humans are to trust agents with important
tasks, they are going to want some guarantees on the performance of the agents.
This allows the humans to be confident that problematic or dangerous situations
won’t arise for the humans.

Below, we will introduce two domains that have to address the challenges of
including both humans and agents in real world situations. First, we will describe
a disaster response simulation where a human user must help a team of fire fighter
agents put out all the fires in a downtown area. Second, we present a domain
where agents assist workers with assigning of duties in an office environment.

A key aspect of both domains is “adjustable autonomy” which refers to an
agent’s ability to dynamically change its own autonomy, possibly to transfer
control over a decision to a human. Adjustable autonomy makes use of flexible
transfer-of-control strategies [9]. A transfer-of-control strategy is a preplanned
sequence of actions to transfer control over a decision among multiple entities.
For example, an AH strategy implies that an agent (A) attempts a decision and
if the agent fails in the decision then the control over the decision is passed to a
human (H). An optimal transfer-of-control strategy optimally balances the risks
of not getting a high quality decision against the risk of costs incurred due to a
delay in getting that decision.

Both of these constructed systems were described in earlier publications [11,13]
and had noted the problematic situations when interacting with humans. How-
ever, the diagnosis of such situations and their particular solutions are novel
contributions. Because of their differing characteristics, the domains arrive at
different approaches to their solutions.

2.1 Disaster Response

Techniques for augmenting the automation of routine coordination are rapidly
reaching a level of effectiveness where they can simulate realistic coordination on

44 N. Schurr et al.

Fig. 1. The DEFACTO system displays multiple fires in an urban environment

the ground for large numbers of emergency response entities (e.g. fire engines,
police cars) for the sake of training. Furthermore, it seems inevitable that future
disaster response systems will utilize such technology for coordination among dif-
ferent rescue vehicles. We have constructed DEFACTO (Demonstrating Effective
Flexible Agent Coordination of Teams through Omnipresence) as a high fidelity
system for training and simulating of future disaster response. DEFACTO allows
for a human user (fire fighter) to observe a number of fires burning in buildings
in an urban environment, and the human user is also allowed to help assign
available fire engines to the fires. The DEFACTO system achieves this via three
main components: (i) Omnipresent Viewer - intuitive interface (see Figure 1),
(ii) Proxy Framework - for team coordination, and (iii) Flexible Interaction -
adjustable autonomy between the human user (fire fighter) and the team. More
about DEFACTO can be found here [11].

(a) Subject 1 (b) Subject 2 (c) Subject 3

Fig. 2. Performance

The DEFACTO system’s effectiveness was evaluated through experiments
comparing the effectiveness of adjustable autonomy strategies over multiple
users. In DEFACTO, each fire engine is controlled by a “proxy” agent [11] in
order to handle the coordination and execution of adjustable autonomy strate-
gies. Consequently, the proxy agents can try to allocate fire engines to fires in

Asimovian Multiagents: Applying Laws of Robotics to Teams 45

a distributed manner, but can also transfer control to the more capable human
user. The user can then allocate engines to the fires that the user has control of.

The results of our experiments are shown in Figure 2, which shows the results
of subjects 1, 2, and 3. Each subject was confronted with the task of aiding
fire engines in saving a city hit by a disaster. For each subject, we tested three
strategies, specifically, H , AH and AT H ; their performance was compared with
the completely autonomous A strategy. An H strategy implies that agents com-
pletely rely on human inputs for all their decisions. An A strategy is one where
agents act with complete autonomy and allocate themselves to task (fires) with-
out human assistance. An AH strategy allows the agent to possibly allocate itself
to a task, and if not, then transfer control to the human, whereas the similar
AT H strategy allows the whole agent team to try and allocate a task amongst
the team before it will resort to transferring control to a human. Each experi-
ment was conducted with the same initial locations of fires and building damage.
For each strategy we tested, we varied the number of fire engines between 4, 6
and 10. Each chart in Figure 2 shows the varying number of fire engines on
the x-axis, and the team performance in terms of numbers of building saved on
the y-axis. For instance, subject 2 with strategy AH saves 200 building with
4 agents. Each data point on the graph is an average of three runs. Note that
the phenomena described below ranges over multiple users, multiple runs, and
multiple strategies.

Figure 2 enables us to conclude that: Following human orders can lead to
degradation in agent team performance. Contrary to expectations and prior re-
sults, human involvement does not uniformly improve team performance, as
seen by human-involving strategies performing worse than the A strategy in
some cases. For instance, for subject 3, AH strategy provides higher team per-
formance than A for 4 agents, yet at 6 agents human influence is clearly not
beneficial (AH performs worse than A). Furthermore, for subject 1, following
human orders leads to lower performance with 10 agents, with AH or AT H ,
than with a fully autonomous strategy (A). We also note that the strategies
including the humans and agents (AH and AT H) for 6 agents show a noticeable
decrease in performance for subjects 2 and 3 (see Figure 2) when compared to 4
agents. Since the performance of the fully autonomous strategy increases along
with the increasing number of agents, we conclude that the culprit is the agents
following human orders in AH and AT H . It is very important to have the team
understand which factors contributed to this phenomena and to have the team
be able to prevent it.

2.2 Office Assistants

Another domain that we consider is the Task Management Problem (TMP) in
personal software assistants. This is a problem that we are currently address-
ing as part of CALO (Cognitive Agent that Learns and Organizes), a software
personal assistant project [5]. In this domain, a set of dependent tasks is to be
performed by a group of users before a deadline. An example could be one where
a group of users are working on getting a paper done before the deadline. Each

46 N. Schurr et al.

user is provided with an agent assistant. Each agent monitors the progress of
its user on various tasks, and helps in finishing the tasks before a deadline by
doing task reallocations (in case of insufficient progress) at appropriate points in
time. Agents also make a decision on whom to reallocate a task, thus having to
monitor status of other users who are capable of doing it. More details of TMP
are in [13].

This problem is complicated as the agents need to reason about reallocation
in the presence of transitional and observational uncertainty. Transitional uncer-
tainty arises because there is non-determinism in the way users make progress.
For example, a user might finish two units of a task in one time unit, or might
not do anything in one time unit (a task here is considered as a certain number
of units of work). Observational uncertainty comes about because it is difficult
to observe exact progress of a user or the user’s capability level.

Agents can ask their users about the progress made (when there is significant
uncertainty about the state) or for decision on re-allocation of the current task.
This asking, however, comes at a cost of disturbing the user and occurs only
with a certain probability as users may or may not respond to agents request.
Thus each agent needs to find an optimal strategy that guides its operation at
each time step, till the deadline.

Partially Observable Markov Decision Problems (POMDPs) were used in
modeling this TMP problem, owing to the presence of uncertainty. Policy in
a POMDP is a mapping from “belief states” (probability distribution over the
states in the system) to actions. Each user’s agent assistant computes such a
policy. (More information on POMDPs can be found in [6]. Though this paper
does not require an in-depth understanding of POMDPs, high level familiarity
with POMDPs is assumed.)

Unfortunately, within TMP an agent faithfully following orders may result in
a low quality solution (low expected utility). There are scenarios where human
can provide a decision input at a certain point in time, but later the agent
team runs into problems because of faithfully following that decision input. For
example, the human can ask the agent not to reallocate the task because of a
belief that the task can be finished on time. Yet, since the human is in control
of many tasks, she may not be able to finish the task on time. Also, agent
faces significant uncertainty about certain factors in the domain, and hence is
not in a situation to override human decisions. For example: agent can have
significant uncertainty about the progress on a task, due to the transitional and
observational uncertainty in the domain. The result is that:

1. Faithfully following human decision may lead to problems: This is because
humans are in control of many tasks, and depending on the workload over
time, some human decisions might need to be corrected over time. Since
humans may not provide such corrections, agents may need to override the
human’s earlier decision.

2. Agents need to reduce uncertainty about certain variables : While agents must
occasionally override human decisions, they face uncertainty in estimating
human capability (amount of progress accomplishable in one time unit) and

Asimovian Multiagents: Applying Laws of Robotics to Teams 47

information about progress. If the agent assumes a certain capability level
(from previous experiences) and plans accordingly without considering hu-
man input, it might run into problems: (a) if it assumes a lower capability
level, then the reallocation will happen early and (b) if a higher value is as-
sumed, it wouldn’t reallocate until very late, making it difficult for the user
taking this task. Similarly, an agent faces uncertainty about actual progress
on a task.

3 On Asimov’s Laws

In 1942, having never had any personal contact with a robot, Isaac Asimov sat
down to write his short story “Runaround” [2] and in doing so enumerated for
the first time his three laws of robotics:

– First Law: A robot may not injure a human being, or, through inaction, allow
a human being to come to harm.

– Second Law: A robot must obey the orders given it by human beings except
where such orders would conflict with the First Law.

– Third Law: A robot must protect its own existence as long as such protection
does not conflict with the First or Second Law.

Asimov believed these three laws were both necessary and sufficient, an idea
he set out to illustrate in his series of robot stories. While he believed that
correctly implemented his three laws would prevent robots from becoming the
nightmarish Frankensteins that were the fodder of many science fiction stories,
even Asimov admitted that the operationalization of his three laws would not be
simple or unambiguous. In this paper, we focus on operationalization of the first
two laws, which requires several key issues be addressed in concretely applying
them to our domains of interest: (i) Providing definition of “harm” so central to
the first law; (ii) Applying these laws in the context of teams of agents rather
than individuals; and (iii) Addressing these laws in the presence of uncertainty in
both the agent’s and the human user’s information about each other and about
the world state. Previous work has only focused on the first law, and thus on
techniques to avoid harm via agents’ actions [4,8,14]. This previous work dealt
with both a single agent and a team of agents, but the emphasis remained on
the autonomous actions of these agents. In contrast, the second law emphasizes
interactions with humans, and thus its relevance in the context of heterogeneous
systems that involve both humans and multiagent teams, that are of interest in
this paper.

Indeed, among the issues that must be addressed in concretely applying these
laws, the first two — defining harm and applying the laws to teams instead of
individuals — are addressed in previous work (albeit differently from our work).
However, it is uncertainty of information that the agents and the human user
may suffer from, that is the novel issue that must be clearly addressed when we
deal with the second law. In the following, we provide a more detailed discussion
of these three issues, with an emphasis on the issue of uncertainty. Nonetheless, in

48 N. Schurr et al.

contrast with previous work, this paper is the first (to the best of our knowledge)
that addresses these three issues together in operationalizing the two laws.

3.1 Definition of Harm

What constitutes harm to a human being? Must a robot obey orders given it by
a child, by a madman, by a malevolent human being? Must a robot give up its
own expensive and useful existence to prevent a trivial harm to an unimportant
human being? What is trivial and what is unimportant? pg 455 [2]

The notion of harm is fundamental to Asimov’s laws. Yet, Asimov himself did
not imply that harm to be necessarily physical harm to humans. Indeed, in the
story “LIAR” harm is purely mental harm (e.g. someone not getting a promotion
they wanted) [2]. So whereas the notion of harm as physical harm to humans
is obviously relevant in one of our domains mentioned earlier (disaster rescue),
it is also relevant in the office assistant domain, where harm may imply harm
to some business (e.g. products not delivered on time) where the office assistant
team is deployed. Indeed, in previous work in software personal assistants that
is motivated by Asimov’s laws [14,8], the notion of harm includes such effects as
deletion of files or meeting cancellation.

In this paper, the notion of harm is operationalized as a “significant” negative
loss in utility. So if actions cause a significant reduction in an individual agent’s
or team’s utility, then that is considered as constituting harm. In our disaster
rescue simulation domain, such negative utility accrues from loss of (simulated)
human life or property. An example of this can be see when subject 3’s inputs
are followed by 6 fire engine agents, resulting in more buildings being burned
than if the inputs were ignored. In our office assistant domain, the lack of the
agent team’s ability to complete tasks by deadlines provided is what constitutes
harm.

3.2 Applying Laws to Teams

I have dealt entirely with the matter of the interaction between [a] single robot
and various human beings. ... Suppose two robots are involved, and that one
of them, through inadvertence, lack of knowledge, or special circumstances, is
engaged in a course of action (quite innocently) that will clearly injure a human
being – and suppose the second robot, with greater knowledge or insight, is aware
of this. pg. 479-480 [2]

Diana Gordon-Spear’s work on Asimovian agents [4] addresses teams of agents
that guarantee certain safety properties (inspired by the first law above) despite
adaptation or learning on part of the agent team. The key complications arise
because the actions of multiple agents interact, and thus in preserving such safety
property, it is not just the actions of the individual, but their interactions that
must be accounted for, in terms of safety. In our work (particularly as seen in
the disaster response domain of Sections 2.1 and 4.1), similar complexities arise
when applying the laws to teams of agents. No single individual may be able to
detect harm by itself; rather the harm may only be detectable when the team of
agents is considered as a whole.

Asimovian Multiagents: Applying Laws of Robotics to Teams 49

3.3 Uncertainty

Even a robot may unwittingly harm a human being, and even a robot may not
be fast enough to get to the scene of action in time or skilled enough to take the
necessary action. pg 460 [2]

The second law in essence requires that agents obey human orders unless such
orders cause harm to (other) humans. Thus, this law opens up the possibility
that the agent may disobey an order from a human user, due to the potential for
harm. In many previous mixed agent-human systems including our own systems
described in Section 2, human inputs are considered final, and the agent cannot
override such inputs — potentially with dangerous consequences as shown earlier.
Asimov’s second law anticipates situations where agents must indeed override
such inputs and thus provides a key insight to improve the performance of agents
and agent teams.

Yet, the key issue is that both the agents and the human users have uncer-
tainty; simply disobeying an order from a human given such uncertainty may be
highly problematic. For example, the agents may be uncertain about the infor-
mation state of the humans, the intellectual or physical capability of the human
users, and the state of the world, etc. In such situations, agents may be uncer-
tain about whether the current user order may truly cause (inadvertent) harm
to others. It is also feasible that the human user may have given an order under
a fog of uncertainty about the true world state that the agent is aware of; and
in such situations, the agents’ inferences about harmful effects may be accurate.

The key insight in this paper then relates to addressing situations under the
second law where an agent may disobey human orders due to its potential for
causing harm to other humans: given the uncertainty described above, an agent
should not arbitrarily disobey orders from humans, but must first address its own
or the human users’ uncertainty. It is only upon resolution of such uncertainty
that the agent may then disobey an order if it causes harm to others.

The key technical innovation then is recognizing situations where an agent
or the human user faces significant uncertainty, and taking actions to resolve
such uncertainty. When addressing domains such as the office assistant, agents
bring to bear POMDPs. Given this POMDP framework, when an agent is faced
with an order from humans with the potential for harm (significant reduction
in individual or team utility) it must consider two particular sources of uncer-
tainty before obeying or disobeying such an order: (i) uncertainty about actual
user progress on a task and (ii) uncertainty about user capability to perform a
task(i.e.- user’s rate of performing the task).

If the above two uncertainties are resolved, and the expected utility compu-
tations of the POMDP illustrate that the human order leads to reduction in
individual or team utility, then this is the case (by Asimov’s second law) where
an agent may ultimately disobey human orders.

In addressing the simulated disaster rescue domain, the issue centers on poten-
tial uncertainty that a human user must face. Here, an agent team acting in the
simulated disaster-rescue environment potentially has more certainty about the
world state than the human user does. Unfortunately, the disaster is spreading

50 N. Schurr et al.

rapidly, and unlike the office environment, the agent team may have little time
to deliberate on the uncertain situation, and come up with a detailed policy (as
with a POMDP). Instead, the agent team quickly brings up to the notice of the
human user key possible sources of potential harm due to the human’s order. At
this juncture, the human user may be able to reduce his/her uncertainty about
the world state, and thus possibly rectify his/her order.

4 Operationalizing Asimov’s Laws

In each of our two domains, appropriately obeying the first and second laws
would have improved the situation. Specifically in the second law, the caveat
where human directives should be followed, unless it causes harm to humans, is
not being paid attention to. Instead, as mentioned in Section 2, agents blindly
obey human commands, which is problematic. However, as mentioned earlier, in
complex domains, there is significant uncertainty. Given such uncertainty, it is
quite feasible for the humans to provide imperfect inputs or orders; yet agents
may not be certain that these orders are in error, due to the uncertainty that
they face. Our position is that in order to start constructing teams of agents and
humans that perform well, they must not always take human input as final, yet
must only do so after resolving uncertainty.

Given that humans may (unintentionally) provide problematic input, we pro-
pose that there are 5 general categories of agents’ reactions to problematic human
input. In particular, agents may:

– A. Follow the human input exactly
– B. Ignore the human input completely
– C. Make the human aware of the alleged problem in the input
– D. Make the human aware of the alleged problem in the input and offer

non-problematic option(s)
– E. Limit human input to only pre-defined non-problematic options to be

chosen from by the human

Due to the uncertainty (mentioned in Section 3.3), Option A and B become
infeasible. Option A results in suboptimal performance and does not take ad-
vantage of the team’s resources and potential as seen in Section 2. Option B
may end up in better performance, but not only results in angry or confused
humans, the agents may also be mistaken due to its own uncertainty and poor
performance. Option E is not very practical (too many options to explore) for
dynamic domains, or worse, it is impossible to elicit all options. It is then de-
sirable to engage in some of the dialogue described in Options C or D. Our aim
is to have joint performance of the agents and humans be better than either of
them separately, that is to have the agents correct problems in humans and vice
versa.

4.1 Disaster Response

Our goal was to have the agent team be able to detect the problematic input
seen in the previous experiments and then be able to engage in some type of

Asimovian Multiagents: Applying Laws of Robotics to Teams 51

(a) Subject 1 (b) Subject 2 (c) Subject 3

Fig. 3. Amount of agents assigned per fire

dialogue with the human user. In order to do this, we continued an in depth
analysis of what exactly was causing the degrading performance when 6 agents
were at the disposal of the human user. Figure 3 shows the number agents on
the x-axis and the average amount of fire engines allocated to each fire on the
y-axis. AH and AT H for 6 agents result in significantly less average fire engines
per task (fire) and therefore lower average. For example, as seen in Figure 3,
for the AT H strategy, subject 3 averaged 2.7 agents assigned to each fire when
4 agents were available, whereas roughly 2.0 agents were assigned to each fire
when 6 agents were available. It seems counterintuitive that when given more
agents, the average amount that were assigned to each fire actually went down.
Another interesting thing that we found was that this lower average was not
due to the fact that the human user was overwhelmed and making less decisions
(allocations). Figures 4(a), 4(b), and 4(c) all show how the number of buildings
attacked do not go down in the case of 6 agents, where poor performance is seen.

We can conclude from this analysis that the degradation in performance oc-
curred at 6 agents because fire engine teams were split up, leading to fewer
fire-engines being allocated per building on average. Indeed, leaving fewer than
3 fire engines per fire leads to a significant reduction in fire extinguishing ca-
pability. Given this, we implemented the ability for the agent team to detect if
a reallocation is pulling a teammate from a working group of 3 or more. Once
this is detected, there is a high probability that the team performance will be
degraded by following the human input. But since there is some uncertainty in
the final outcome, the agents do not blindly follow (Option A from above) or
ignore (Option B from above). Instead they present the possible problem to the
human (Option C from above).

In order to evaluate this implementation we set up some initial experiments
to determine the possible benefits of the team being able to reject the splitting
of a coordinated subgroup. We used a team comprised of a human user and 6
agents. We used the same map and the same AT H strategy as were used in
previous experiments. Each of these results were from a short (50 time step) run
of the DEFACTO system. The only variable was whether we allowed the agents
to raise objections when given allocation orders to split up. In these experiments,
the human user listened to all agent objections and did not override them. The
results of this initial experiment can be seen in Table 1. In Table 1, we present

52 N. Schurr et al.

0

50

100

150

200

250

300

2 4 6 8 10 12

Number of Agents

B
u

ild
in

g
s

A
tt

ac
ke

d

AH ATH

(a) Subject 1

0

50

100

150

200

250

2 4 6 8 10 12

Number of Agents

B
u

ild
in

g
s

A
tt

ac
ke

d

AH ATH

(b) Subject 2

0

50

100

150

200

250

300

350

2 4 6 8 10 12

Number of Agents

B
u

ild
in

g
s

A
tt

ac
ke

d

AH ATH

(c) Subject 3

Fig. 4. Number of buildings attacked

Table 1. Benefits to team when rejecting orders allows split of team. In top half, team
accepted all human orders, and in bottom half, problematic orders were rejected.

Reject Orders to Split? Buildings Damaged Fires Extinguished

No 27 3

No 29 3

No 33 1

Yes 14 5

Yes 18 5

Yes 20 5

results for three problem instances. Performance is measured by calculating the
amount of buildings damaged (less is better) and the number of fires extinguished
(more is better). As seen from the number of buildings damaged, by allowing the
agents to reject some of the human input (see bottom half of Table 1), they were
able to more easily contain the fire and not allow it to spread to more buildings.

4.2 Office Assistants

In the TMP domain, the state space of the POMDP consists of a triple of three
variables: {Progress on task, Capability level associated with the user, Time
till deadline}. As mentioned earlier, of these three variables, an agent may be
uncertain about the progress level and the capability level. Actions for the agent
can be {Wait, Reallocate, AskDecision, AskProgress}. Wait is for the agent
to do waiting while user makes progress on the task, while Reallocate is for
the agent to reallocate the task to a different user. AskDecision causes the
agent to ask the user whether to reallocate, while AskProgress is for removing
uncertainty about progress by gathering more information. AskDecision also
leads to reduction of uncertainty in a user’s capability level – an agent invokes
AskDecision when, according to its estimate of user capability, a task should
be reallocated. A user’s agreement or disagreement to reallocate provides an
opportunity to correct this estimate. However, an agent will disobey this order
from a user at a later time if this estimate is corrected.

Asimovian Multiagents: Applying Laws of Robotics to Teams 53

When an agent executes AskDecision to ask whether to reallocate, then,
based on the user response, an agent addresses its uncertainty in user capability
level as follows. There are three cases of user response to consider:

1. Reallocate: In this instance, the agent had concluded based on its estimate
of the user’s capability to reallocate. Since the user concurs, the agent’s
POMDP policy dictates that the task be reallocated to the appropriate user,
and the policy terminates.

2. Don’t Reallocate: Here the user has disagreed with the agent. Assuming
a maximum error of ε in its estimation of the user’s capability level, this
response from the user makes the agent use a capability level increased by ε
for the future time points. Consequently, the agent resolves its uncertainty
in user capability level. If, at a later time, even with this increased user
capability, the agent estimates that the user will be unable to fulfill the task,
it will then reallocate, thereby overriding prior human input.

3. No Response: Equivalent to a wait action, with cost incurred for asking the
user.

Fig. 5. Comparison of expected values of the two strategies

Figure 5 compares the expected value of two policies for the TMP problem
mentioned in Section 2.2. The first policy is one where agents always obeyed
human decisions, e.g. if the human gave an order that a task should not be
reallocated, the agent absolutely never reallocated the task. In the second policy,
the agents sometimes override human orders. In particular, if the human user
ordered to not reallocate, then the agent initially obeyed the human order. While
obeying this order, the agent also increased its estimate of human capability by
maximum allowable amount (since the user disagreed with the agent’s estimate of

54 N. Schurr et al.

reallocation), thus reducing potential uncertainty about human user capability.
However, subsequently, the policy reallocated the task if the user was seen to
be unable to finish the task on time, even though earlier the user had given an
order to not reallocate. This is because the agent had now reduced its uncertainty
about human capability, and was now certain that disobeying this user order will
avoid harm to the team. In Figure 5, the y-axis plots the value of the two policies
mentioned above: obeying human decision vs overriding human decision. The
x-axis plots different belief states (probability distribution over world states).
We see that the policy to (sometimes) override achieves higher expected value
than the policy to always obey human decisions.

5 Related Work and Conclusion

Many projects that deal with agent interactions with humans have started to
worry about the safety of those humans. Consequently, they have started to
look to Asimov’s laws of robotics for some crucial guarantees. This past work
([4,8,14]) has focused on asimovian agents but dealt with only the first law
(against human harm). We have discussed the relationship of our work to this
previous work extensively in Section 3. Another area of related work is mixed
initiative planning [1,7]. For the most part, this work focuses on single-agent to
single-human interactions, whereas we focus on multiagent teams. Additionally,
our work is to allow for human-agent interaction during execution, as opposed to
their work, which is focused on offline planning. None of this research addresses
the issue of uncertainty addressed in our work.

Lastly, there has also been work where humans are beginning to interact with
agent/robot teams [3,10]. These efforts recognize that humans may not provide
a timely response. In part to alleviate the lack of such timely response, Scerri
et al [9] introduced the notion of adjustable autonomy strategies. Our work al-
ready incorporates such strategies, but recognizes that human users may still
provide such imperfect or incorrect inputs. There has also been some work that
involves humans interacting with multiagent teams actually leading to perfor-
mance degradation due to imperfect input: In past work [12] illustrated that an
autonomous team of simulated robots performed better than when aided with
human inputs (although in some situations the humans were able to improve the
simulated robot performance). However, this work did not address the question
of how the simulated robots would recover from such setbacks.

In conclusion, this paper is based on the premise that Asimov’s laws provide
us desirable guarantees for environments where humans must work with multi-
agent teams. While previous work has focused operationalizing just the first of
Asimov’s laws, this paper focused on the second law. In particular, the paper
focused on the key insight provided by that law: agents must not blindly obey hu-
man inputs at all points. Instead, agents must pay attention to the caveat that
in the law that allows for disobeying human inputs when such input leads to
harm. Furthermore, we illustrated that given the uncertainty faced by the agent
team and the human users, agents must attempt to reduce such uncertainty

Asimovian Multiagents: Applying Laws of Robotics to Teams 55

before disobeying any human input. We illustrated the results of two different
domains that each have different approaches to operationalizing Asimov’s laws.
In the disaster rescue simulation domain, real-time response precludes detailed
planning to address uncertainty; whereas in our office assistant domains, agents
performed detailed decision-theoretic planning to address uncertainty. These re-
sults show that the new agent-human teams avoid the original set of problems
and provide useful behavioral guarantees.

References

1. James F. Allen, Lenhart K. Schubert, George Ferguson, Peter Heeman, Chung H
Hwang, Tsuneaki Kato, Marc Light, Nathaniel G. Martin, Bradford W. Miller,
Massimo Poesio, and David R. Traum. The trains project: A case study in defining
a conversational planning agent. Technical report, Rochester, NY, USA, 1994.

2. Isaac Asimov. Robot Visions (collection of robot stories). Byron Preiss Visual
Publications Inc, 1990.

3. Jacob W. Crandall, Curtis W. Nielsen, and Michael A. Goodrich. Towards pre-
dicting robot team performance. In SMC, 2003.

4. Diana F. Gordon. Asimovian adaptive agents. JAIR, 13:95–153, 2000.
5. http://www.ai.sri.com/project/CALO, http://calo.sri.com. CALO: Cognitive

Agent that Learns and Organizes, 2003.
6. M. L. Littman L. P. Kaelbling and A. R. Cassandra. Planning and acting in

partially observable stochastic domains. AI Journal, 1998.
7. K. Myers. Advisable planning systems. In Advanced Planning Technology, 1996.
8. D V. Pynadath and Milind Tambe. Revisiting asimov’s first law: A response to the

call to arms. In Intelligent Agents VIII Proceedings of the International workshop
on Agents, theories, architectures and languages (ATAL’01), 2001.

9. P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable autonomy for the real
world. Journal of Artificial Intelligence Research, 17:171–228, 2002.

10. P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom, N. Schurr, M. Si, and
M. Tambe. A prototype infrastructure for distributed robot-agent-person teams.
In AAMAS, 2003.

11. Nathan Schurr, Janusz Marecki, Paul Scerri, J. P. Lewis, and Milind Tambe. The
defacto system: Training tool for incident commanders. In The Seventeenth Inno-
vative Applications of Artificial Intelligence Conference (IAAI), 2005.

12. Nathan Schurr, Paul Scerri, and Milind Tambe. Impact of human advice on agent
teams: A preliminary report. In Workshop on Humans and Multi-Agent Systems
at AAMAS. 2003.

13. P. Varakantham, R. Maheswaran, and M. Tambe. Exploiting belief bounds: Prac-
tical pomdps for personal assistant agents. In AAMAS, 2005.

14. D. Weld and O. Etzioni. The first law of robotics: A call to arms. In AAAI, Seattle,
Washington, 1994. AAAI Press.

Persistent Architecture for Context Aware

Lightweight Multi-agent System

Aqsa Bajwa1, Sana Farooq1, Obaid Malik1, Sana Khalique1,
Hiroki Suguri2, Hafiz Farooq Ahmad2, and Arshad Ali1

1 NUST Institute of Information Technology,
166-A, Street 9, Chaklala Scheme 3, Rawalpindi, Pakistan

Tel.: +92-51-9280658; Fax: +92-51-9280782
{aqsa.bajwa,sana.farooq,obaid.malik,sana.khalique,

arshad.ali}@niit.edu.pk
2 Communication Technologies,

2-15-28 OmachiAoba-ku, Sendai 980-0804 Japan
Tel.: +81-22-222-2591; Fax: +81-22-222-2545

{suguri,farooq}@comtec.co.jp

Abstract. Application development on handheld devices using software
agent technology is becoming more and more popular around the world.
Escalation in the use of lightweight devices and PDA’s leads us to create a
concrete base for future nomadic applications, positioned in a changing
environment. However, constrained characteristics of handheld devices
serve as the main hindrance towards achieving this goal. This paper
presents the architecture of context aware FIPA complaint multi agent
system for the lightweight devices called SAGE-Lite, which are capable
of providing fault tolerance through the mechanism of object persistence.
Agents existing on lightweight devices can communicate and provide ser-
vices via Bluetooth and the communication with the server is done via
WAP. Since agents communicate via sending and receiving ACL mes-
sages, this architecture will minimize communication latency with in the
platform. This framework allows implementing agent-based applications
like business applications or e-commerce applications on these resource-
constrained devices.

1 Introduction

Designing and implementing complex software systems have always been much
complicated and time consuming. Different research communities have been
striving to achieve better methods and techniques for the development of such
systems and this struggle led to the basis of software agent technology, which a
few years back became an active research area not only for academia but com-
mercially as well. The research on wireless communication technology has also
become popular lately as nomadic computing; wireless data communications and
mobile devices enable accessing fixed network services from almost anywhere and
any time [1].

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 57–69, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

58 A. Bajwa et al.

Software agent technology is a capable approach for the analysis, specifica-
tion and implementation of complex software systems. Multi-agent systems are
systems composed of multiple agents, which interact with one another, typically
by exchanging messages through some computer network infrastructure. MAS
provide proper execution environment to agents so that they can assure the pro-
vision of services to other agents by cooperating, coordinating, and negotiating.

It is about time that these two interesting and important technologies, no-
madic computing and software agent technology, start to converge [1]. About
1/3 of the world’s total population is mobile Internet users as handheld device
are becoming more than a personal information system. So the communicative
agent technology in our opinion will reach new heights in this direction.

Foundation for Intelligent Physical Agents or simply FIPA is one of the stan-
dard governing bodies [3], which provide an abstract architecture for lightweight
multi-agent system developers to follow. Agent Management System (AMS),
Agent Communication Language (ACL), and Message Transport Service (MTS)
are one of its mandatory components. Figure 1 shows the list of mandatory and
optional of lightweight MAS.

Fig. 1. The mandatory and optional components of a lightweight agent platform

Wireless devices have gained a lot of significance in the past few years. Di-
versified ranges of mobile applications are becoming popular day by day. The
applications run using the constrained resources provided by today’s vast variety
of the cellular devices.

The resources in a handheld device are constrained in terms processing power,
memory, graphical user interface support, screen size and permanent storage.
On the network side, wireless networks are constrained by less bandwidth, more
latency, less connection stability and less predictable availability.

Persistent Architecture for Context Aware Lightweight Multi-agent System 59

At NUST-COMTEC we are developing a FIPA compliant lightweight multi-
agent system called Scalable Fault Tolerant Agent Grooming Environment - Lite
(SAGE-Lite). In this paper, we present our concept and detailed architecture
of the FIPA (Foundation for intelligent physical agents) compliant lightweight
multi-agent system. The primary focus of this paper is to give a complete groom-
ing atmosphere to software agents in the limited environment of hand held de-
vices where they can get registered and publish their services for other agents to
discover and use. Software agents can also communicate with their peers on the
same machine or on the remote machine via message transport service, which
supports communication through WAP and Bluetooth.

This paper consists of 8 sections. Next section briefly reviews the related work.
Section 3 describes the approach followed for this project. Section 4 gives the
architecture of SAGE. Section 5 contains the SAGE-Lite architecture. Section
6 gives the difference between the lightweight architecture and non-lightweight
architecture. Section 7 contains the detailed architectural features of SAGE-
Lite. Programming details are in Section 8. Conclusion and discussion is done
in Section 9.

2 Related Work

MAS are used as core technologies in various applications from information
retrieval to business process automation. Most of MAS platform are based on
JAVA runs on desktop or servers using J2SE and lack interoperability. SAGE-
Lite can be compared with these lightweight agent platforms as they are not
context-aware systems.

LEAP is a Lightweight Extensible Agent Platform; it enables the components
of MAS to run on devices from PDA’s to Smart Phones using either Java 2
Micro Edition (J2ME) or Personal Java, to desktops and servers running J2SE.
It does not have support for object persistence to ensure fault tolerance. In case
of failure in main system whole system will break down. Also LEAP does not
provide efficient ACL message encoding implementation for wireless networks.
FIPA specifies bit-efficient encoding scheme to be used to encode ACL message
in wireless environment. Support for context awareness is not provided in LEAP
as a result JADE agents cannot run on a variety of devices.

Micro FIPA-OS is an agent development toolkit and platform based on the
FIPA-OS agent toolkit. The system targets PDA devices that have sufficient re-
sources to execute a PersonalJava compatible virtual machine. The dependence
on personalJava limits its deployment to relatively powerful PDA’s. MicroFIPA-
OS allows the use of FIPA-OS components such as AMS and DF. FIPA-OS and
MicroFIPA-OS use tasks and conversations as the basic metaphor for program-
ming agents, and agent functionality. Since the task and conversation manage-
ment introduce overhead and latencies in messaging and agent execution. The
platform is executed entirely on the device, but it is recommended that only one
agent be executed on each small device.

60 A. Bajwa et al.

AgentLite is an agent platform for deployment on fixed and mobile devices
with various operating systems and that can operate over both fixed and wireless
networks. It consists of an agent container running on each device on which
several agents can be placed. If two agents on same device communicate with each
other the agent container does the communication internally but if the agents
are on separate devices then agent container act as a proxy. The architecture
is not entirely FIPA complaint because there is no directory service. It can run
on devices with J2ME/CLDC/MIDP. The smallest device targeted is mobile
phone, although there are not any tests to prove that mobile phone can support
a platform. [7].

Grasshopper is based on the older MASIF (Mobile Agent System Interop-
erability Facility) specifications of OMG (Object Management Group). It was
intended for J2SE but a Personal Java version is also available. It concentrates
on mobile agents and a stable extendible platform. Main drawbacks are lower
scalability and a weak internal agent communication organization.[9]

3 Approach

Major design goals for SAGE-Lite were: to have a smallest footprint so that it can
be deployed on devices with lowest memory and processing power. SAGE-Lite
agents uses the ACL, a FIPA defined programming language for communication.
Java 2 Standard Edition (J2SE) is not suitable for mobile devices; it requires
too many resources and many standard classes are less relevant on small devices.
PersonalJava is based on J2SE’s Java Development Kit 1.1 and consist of Java
Application Programming Interface (API) tailored for PDAs, set-top boxes, hi-
end mobile phones. Unfortunately there is no ’one-size-fits -all’ environment for
a whole range of mobile devices with different capacities. Therefore, the devel-
opment environment chosen for this project is Java 2 Micro Edition (J2ME), in
which building blocks can be combined to setup a complete runtime environment
that suits a particular type of device.

The requirements for the development of SAGE-Lite are:

• can be deployed on devices having at least 1Mb RAM.
• developed in Java 2 Micro Edition (J2ME). It is the reduced version of

Java programming platform. J2ME technology consists of a Java Virtual
Machine (JVM) and set of APIs for providing a complete runtime envi-
ronment for the target device.

• target devices should support J2ME (CLDC 1.0 and MIDP 2.)

4 SAGE Architecture

Scalable fault tolerant agent grooming environment (SAGE) is the first research
initiative of its kind in the South Asian region. SAGE is an open source FIPA
complaint second-generation multi agent system, which is a distributed decen-
tralized architecture.

Persistent Architecture for Context Aware Lightweight Multi-agent System 61

Fig. 2. Main Architecture of SAGE

This decentralization feature enables the system to be highly scalable and the
objective of fault tolerance is achieved by the indigenous idea of Virtual Agent
Cluster, which uses separate communication layers among different machines.
The Virtual Agent Cluster works independently regardless of the external envi-
ronment proceedings, providing a self-healing, proactive abstraction on top of all
instances of multi-agent systems. Also the architecture fully supports peer-to-
peer communication, which brings scalability, fault tolerance and load balancing
among distributed peers as well [2].

5 SAGE-Lite Architecture

SAGE-Lite is an evolution of the SAGE agent platform from which it inherits
the lightweight behavior. We propose surrogate architecture, a set-up in which
SAGE and SAGE-Lite works together in combination. As shown in the fig. 3
there will be a static distributed platform SAGE consisting of main container
providing FIPA interoperability to one or more lightweight platforms, SAGE-
Lite. SAGE and SAGE-Lite will communicate using Wireless Application Pro-
tocol (WAP).

Agents running on different handheld devices will communication with one
another via Bluetooth and WAP

Context Awareness. Lightweight devices have different features and capabil-
ities. To cater the wide variety of devices context awareness module has been

62 A. Bajwa et al.

Fig. 3. Communication Between SAGE and SAGE-Lite

introduced in architecture. It enhances the capabilities of SAGE and makes it
compatible with a vast variety of currently available lightweight devices. The
concept presented in this architecture emphasizes on the device based context
awareness i.e. the services should be provided to a devices depending upon the
capabilities of the devices. If the device does not support GUI, then it should
not get the service with GUI or if it has lower processing power then the services
with minimal features should be sent to the devices. For this purpose the device
will first send its full specifications to the main container i.e. SAGE and then
SAGE will send the service to the device according to its specifications. Fig. 4
explains the above concept.

Fig. 4. Context awareness in SAGE

Persistent Architecture for Context Aware Lightweight Multi-agent System 63

6 Differences Between SAGE and SAGE-Lite

Table 1. Difference between SAGE and SAGE-Lite

Name Of Component Non-Light Weight
(SAGE)

Light weight
(SAGE-Lite)

AMS -Heavy data structures. Each agent
has its own record queue
-Running as an Agent
-All communication between compo-
nents AMS, MTS, DF has to be done
via ACL messages which incorporates
encoding and decoding over heads
with additional increase in execution
memory footprint of platform.
-Agent Migration is done using
CORBA, which itself is heavy.

-One queue that maintains all agents
record. No heavy data structures.
-AMS acts as a local service
-Communication between components
AMS, DF, MTS does not need to be
encoded using ACL thus reducing en-
coding/decoding, memory and process-
ing overhead.
-Agent migration is done by transferring
the agent object via Bluetooth or WAP
no additional packages e.g. CORBA are
needed.

VMA -Running as an agent
-Heavy Graphical User Interface

-Small part of AMS not an agent
-Limited GUI
-Only available if the device has support
for GUI
-Availability and non- availability de-
cided by Context Handler Module ac-
cording to the device Specification sent
by the device.

MTS -Very heavy data structures
-Multiple transmission and reception
queues for a single agent that means
100’s of queues for platform having
many agents
-Support for many protocols e.g IIOP,
HTTP etc

-No heavy data structures
-Only two queues one for transmission
and one for reception handling all agents
within the platform or from another
platform.
-Support for WAP and Bluetooth only

DF -Built on HSQL including other
database Packages.
-Very Heavy, runs as a separate Agent
(ACL encoding overhead)

-Is built on RMS, built in feature of
J2ME so no additional Packages for
database Management Required.
-Runs as a service (local) and is incor-
porated as a small part of AMS

ACL -Support for sl0, sl1, sl2, OWL etc
-Full Support For Ontology

-Supports only sl0
-Minimal Support for Ontology

7 Features of SAGE-Lite

Our basic premise was to move from wired to wireless architecture. Existing
lightweight architectures contain different system agents, created during the boot
up time. These agents are started as separate threads and the code of these agents
is already resident in the agent platform class files. Apart from these system agent
there are application agents running on the handheld device too. All the com-
munication that is being done among these agents is via encoded ACL Messages.
Shortcoming of these architectures is that they consume a lot of processing power
during encoding and decoding these ACL messages. SAGE-Lite on the other hand,
instead of keeping AMS-Lite, DF-Lite and VMS-Lite as system agents, keeps them
as system services. As a result there is a significant decrease in the consumption
of processing power in SAGE-Lite. These system services call functions of each

64 A. Bajwa et al.

Fig. 5. Main system architecture of SAGE-Lite

other’s to communicate. Hence there are no system agents on the platform but
only application agents using all the resources to the maximum.

Major Components. The major components of SAGE-Lite are, AMS-Lite
(Light-weight Agent Management System) responsible for managing the en-
tire lightweight platform. It has DF-Lite (Light-weight Directory Facilitator)
and VMS-Lite (Light-weight Visual Management Service) as its subcomponents,
where DF-Lite serves as the yellow page directory on the hand held device and
VMS-Lite provides the graphical user interface. MTS-Lite (light weight message
transport service) is the hot communication link between the agents and ACL
Lite (light weight agent communication language) is the language that agents
use. The complete architecture of SAGE-Lite is given in the fig. 5.

Architecture of AMS-Lite. According to FIPA, AMS is the mandatory com-
ponent of MAS. Only one AMS can exist in a single agent platform (AP). It
maintains a directory of AIDs, which contain transport addresses (amongst other
things) for agents registered with the AP. Each agent must register with an AMS
in order to get a valid AID. In SAGE-Lite, AMS-Lite contains DF-Lite and VMS-
Lite as its sub components.

Directory Facilitator Lite (DF-Lite). When a request for agent creation
is received, AMS-Lite generates valid AID and the agent details are saved in
DF-Lite. DF-Lite provides yellow page services to other agents. Agents can also
register their services with it. To find out what services are offered by other
agents they need to query AMS-Lite, which in turn queries the DF-Lite.

Rationale of having a local DF (DF-Lite) is that a mobile agent is not bound
to a device or a platform, which created it. It moves from one platform to another

Persistent Architecture for Context Aware Lightweight Multi-agent System 65

Fig. 6. Architecture of Lightweight Agent Management System

or to one device to another to complete its task.. This local DF-Lite on a light
device contains the lists of agents running only on that particular device. In this
way each device will have a list of its all registered agents in its local DF-Lite,
and all the registered agents on the whole platform will be listed in the DF of
SAGE which is our main container. This meticulous feature makes SAGE-Lite
highly distributed or distributed mobile container. This feature mainly helps
when a device shifts itself from one cell to another. Portable devices roam about
in different location in an unpredictable way. And they have no prior knowledge
about the available services and resources; they need to discover the available
services on run time. So when our mobile device enters a new zone, record
of all the agents residing on the device will also be shifted into a new zone
through this DF-Lite. Otherwise our device needs to remain connected with
home agent platform (main container residing in the previous zone). Without
DF-Lite, the only possible way for the device to get its agents registered with
the guest server (main container residing in new zone) would be by letting the
guest server contact the home server for the list of agents running on that device.
For this purpose, the lightweight device after movement from one zone to the
other would be required to send its name with the name of the home platform
to the guest server. Alternatively, the device can remain connected to its home
platform and in this case it does not have to bother the guest sever, but there
will be a disadvantages with full time connectivity with the home server. The
former technique has three major disadvantages:

– The wired link between different servers can suffer a severe bottleneck prob-
lem. The mobility factor of the handheld devices makes them shift there cells
every now and then plus keeping in mind the increasing number of cell phone
users, it is quite evident that more then reasonable amount of traffic can be

66 A. Bajwa et al.

generated which can cause the links to some servers suffer from bottle neck
problems.[8]

– The time the guest server takes to get the list of registered agents on the
device causes delay in the normal functioning of the application running on
SAGE-Lite platform. [8]

– Another reason is that when two devices will search for services using Blue-
tooth and there is no local DF, then each device needs to connect with its
server every time request for services arises. [7]

Services published by agents on a lightweight device are discoverable by other
agents residing on different lightweight devices through the Bluetooth by service
discovery mechanism.

Architecture of MTS-Lite. While designing MTS-Lite, the major point of
consideration was to keep this module as light as possible in terms of the mem-
ory footprint it requires. It will enable the module to operate efficiently in the
constrained environment provided by the small devices. This concern limited us
from the use of heavy data structures or larger class hierarchies through out
the development process. Fig. 8 shows the proposed class hierarchy for MTS-
Lite. Also sending ACL messages over a wireless link had its own complications
and risks. To make this communication efficient and effective, we adopted a
FIPA-complaint encoding scheme called ”Bit Efficient Encoding Scheme” for
the representing ACL Messages to be sent over the wireless link. Fig. 7 shows
the isolated architecture of MTS-Lite. This module is capable of communicating
wirelessly through WAP and Bluetooth. The Message Send/Receive Module is
responsible for the message buffering and envelope codec is responsible for the
encoding of the envelope in Bit Efficient encoding representation. Fig.7 shows
the MTS-Lite Architecture.

In order to minimize the processing power and memory consumed by the
message buffering, only two queues will be maintained, one for the received

Fig. 7. MTS-Lite Architecture

Persistent Architecture for Context Aware Lightweight Multi-agent System 67

messages and the other for the messages to be transmitted. The WAP and the
Bluetooth clients will keep on reading the queue for a message and as soon as
they get it, the message is transported after encoding. When MTS-Lite receives
the message to be sent, it first of all checks its own DF-Lite to see if the agent
resides on the same machine. If it finds the match on the same machine then
instead of putting the message in the transmission queue, the message is directly
put into the reception queue.

Fig. 8. Proposed class hierarchy for MTS-Lite

However if the message is to be sent to an agent executing on another machine,
then the message is put into the transmission queue. For the message to be sent
over to another platform, the envelope is also encoded using the particular codec.

Fig. 9. Object persistence mechanism in SAGE Lite

68 A. Bajwa et al.

Fault- tolerance through Object persistence. Agents record is stored in
byte format using the Record Management Source (RMS), which is a built in
feature of J2ME. For storing and manipulation of data stored, RMS API and
Enumeration API have been used. SAGE-Lite provides fault tolerance in a sys-
tem through object persistence. In existing systems when the platform crashes,
data of all the registered agents is lost and when the system boots again, the
agents need to be registered again with the platform’s AMS. In SAGE Lite, when
the platform crashes, provides recovery support by specifically maintaining a list
in RMS of all the registered agents running at the time of crash and then brings
them back into their respective states after the system boots up again. This
makes the architecture persistent. Fig.9 explains the above-mentioned concept.

8 Programming

– Agents and their GUI separated using dynamic linking after the decision of
the context handler at the server running SAGE.

– All agents extend from the ServiceAgent Class.
– The context handler sends the GUI of the agent separately to the device
– The linking of the GUI with the agent is done at the run time at the server.
– All GUI’s of agents have a link function in which the reference to the agent

for which the GUI is made is stored.
public void link (ServiceAgent agent)
AgentForGui=agent;

– Upon reception of the GUI at the client device (PDA, mobile) the agent
controller check and verifies the agent and its GUI for link Authenticity

Public boolean verifyGUILink(ServiceAgent agent,GUI gui)
If(gui.AgentForGUI.name.equals(agent.name))
If(gui.AgentForGui.agentId.equals(agent.agentId))
If(gui.AgentForGui.Creator.equals(agent.Creator))
return true;
return false;

If there is no link error i.e. the source agent for the GUI and the Agent in
check are same then the AgentController registers the agent and its GUI in the
Local DF (DF-Lite).

9 Conclusion

We have developed a context aware lightweight multi agent system called SAGE-
Lite. Framework allows implementing agent-based business applications or
e-commerce applications on these resource-constrained devices. By developing
prototypical applications based on the framework, we have shown that it may in
fact be utilized to develop context aware services efficiently. Therefore a lot of
emphasis has been given to not only on the development of an effective system

Persistent Architecture for Context Aware Lightweight Multi-agent System 69

but also a system that is fully resource efficient. The proposed architecture is
enriched with a lot of unique ideas, which have and will pave ways for a lot more
research initiatives in times to come. Future work is also required to ensure that
our agents can handle the unreliable nature of the network messages.

References

1. Supporting Nomadic Agent-based Applications in FIPA Agent Architecture - Heikki
Helin.

2. Arshad Ali, Sarmad Malik, Muazzam Mugal, M. Omair Shafiq, Amina Tariq ,Amna
Basharat, NUST Institute of Information Technology (NIIT) National University
of Sciences and Technology,(NUST) ,Rawalpindi, Pakistan. Scalable fault tolerant
Agent Grooming Environment - SAGE.

3. Foundation for Intelligent Physical Agents. http://www.fipa.org.
4. FIPA Nomadic Application Support Specification, Document No [SI00014H].
5. FIPA Agent Management Specification, Document No [SC00023K].
6. FIPA Message Transport Specification, Document No [0C00024D].
7. Cosmin Carabelea*, Olivier Boissier Ecole Nationale Supérieure des Mines de Saint-

Etienne Centre SIMMO-SMA, 158 Cours Fauriel, 42000, St.Etienne, France “Multi-
Agent Platforms on Smart Devices : Dream or Reality ?”.

8. Alf Inge Wang* Carl-Fredrik Sørensen, Eva Indal, Dept. of Computer and Informa-
tion Science, Norwagian University of Science and Technology, N-7491 Trondheim,
Norway. “A Mobile Agent Architecture for Heterogeneous devices”.

9. Bernaer, Stijn De Causmaecker, Patrick Maervoet, Joris Vanden Berghe, Greet “
An agent framework for effective data transfer”.

Architectural Design of Component-Based

Agents: A Behavior-Based Approach

Jean-Pierre Briot1,2, Thomas Meurisse1, and Frédéric Peschanski1

1 Laboratoire d’Informatique de Paris 6 (LIP6)
Université Paris 6 - CNRS
Case 169, 4 place Jussieu

75252 Paris Cedex 05, France
{Jean-Pierre.Briot,Thomas.Meurisse,Frederic.Peschanski}@lip6.fr

2 Currently visiting CS Dept., PUC-Rio, Rio de Janeiro, Brazil

Abstract. This paper relates an experience in using a component model
to design and construct agents. After discussing various rationales and
architectural styles for decomposing an agent architecture, we describe a
model of component for agents, named MALEVA. In this model, compo-
nents encapsulate various units of agent behaviors (e.g., follow gradient,
flee, reproduce). It provides an explicit notion of control flow between
components (reified through specific control ports, connexions and com-
ponents), for a fine grain control of activation and scheduling. Moreover,
a notion of composite component allows complex behaviors to be con-
structed from simpler ones. Two examples, in the domain of multi-agent
based simulation, are presented in this paper. They illustrate the abil-
ity of the model to facilitate both bottom-up and top-down approaches
for agent design and construction and also to help at different types of
potential reuse.

Keywords: component, agent, multi-agent systems, behavior, design,
composition, architecture, simulation.

1 Introduction

Components and multi-agent systems are among current popular approaches for
designing and constructing software. Both of them propose abstractions to orga-
nize software as a combination of software elements, with easier management of
evolution (such as changing and adding elements). We consider that multi-agent
systems push further the level of abstraction and the flexibility of component
coupling, notably through self-organization abilities [5]. Meanwhile, we believe
that the component concept and technology may help in the actual construction
of multi-agent systems:

– at the system level, we may consider each agent as a component, to provide
some support for integration, configuration, packaging and distribution of
multi-agent systems,

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 71–90, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

72 J.-P. Briot, T. Meurisse, and F. Peschanski

– at the agent level, by providing some support for structuration, (de)composi-
tion and reuse of its internal architecture.

In this paper, we focus on the second category. Indeed, we believe that the
design and construction of an individual agent can benefit from the principles
of software components (encapsulation, explicit connectors. . .). Our objective
is to help in an incremental design of agents as the composition of simpler
agent behaviors and activities (e.g., follow gradient, flee, reproduce. . .). Our
main application field target is multi-agent-based simulation of phenomena (bi-
ological, ecological, social, economical. . .). Their specific requirements definitely
influenced our design decisions, as well as our case studies and applications
conducted. Meanwhile, we believe that the scope of the component model that
we propose goes beyond the domain of multi-agent-based simulations, and that
other application areas could benefit from some of its principles, e.g., making
control available at the composition level.

After first discussing some rationales for the design of component-based agent
architectures, and referring to related work, we describe a component model
named MALEVA, which aims at encapsulating and composing units of behaviors
to describe complex agent architectures. This component model does not impose
a specific architectural style. One of its specificities is that it applies the principles
of components and software composition to the specification of control, through
the notions of control ports and control components. Two examples will be
presented in the paper. They illustrate how MALEVA can support bottom up
as well as top down design, and also how it offers some potential for reuse and
specialization, through: structural composition of behaviors, abstract behaviors
and design patterns.

2 Rationales and Styles for Agent Architectures

We consider an agent architecture as the description of the relations between
the software (or sometimes hardware) modules that implement the various agent
functions. Except for simple reactive agents, the architecture of an agent may be
complex. It is thus useful to describe it in terms of simpler lower level components
that interact with each other.

Inspired by the seminal work on software architectures by Shaw and Gar-
lan [23], we tentatively propose a classification for agent architectures from the
perspective of architectural styles.1 In this paper, we focus on the rationales for
decomposition and on their impact on the reuse of the architecture or/and of
its components. It is important to note that we do not expect our typology to
be exhaustive. Also note that, as for software architectures [23], a complex ar-
chitecture (e.g., InteRRaP, see Section 2.3) may juxtapose and combine several
architectural/decomposition styles.
1 There is of course no unique typology for agent architectures, and we may find

other classifications in the literature (e.g., in [20]), such as horizontal/vertical or
reactive/cognitive/hybrid.

Architectural Design of Component-Based Agents 73

2.1 Cycle-Based Style

The architectural style based on the notion of cycle, among the simplest ones, fol-
lows the basic computational cycle of an agent situated within an environment:
perception (of the environment), state update (data or/and mental state), gen-
eration of intentions (of actions), action. An example is a general architecture
for situated reactive agents, introduced in Section 4.1. Another example is Yoav
Shoham’s Agent-Oriented Programming (AOP) architecture for cognitive agents
[24] (see Figure 1).

Initialize mental states
and capabilities

Definition of rules for making
new commitments

Update mental states

Execute commitments
for current time

Representation
of mental states
and capacities

Clock

input messages

output messages

data control

Fig. 1. AOP Architecture

2.2 View-Based Style

Another style of decomposition, more structural than computational, considers
various view points (e.g., interaction, environment, organization. . .) and their
respective units of processing (e.g., perception, communication, coordination. . .).
An example is the VOLCANO architecture [21], which decomposes an agent along
four dimensions: A (agent), E (environment), I (interaction) and O (organization).
The architecture is actually a framework with components (named bricks) A, E, I
and O. Figure 2, illustrates the central position of the A brick. Note that the de-
signer needs also to implement inter-bricks adaptors/wrappers, respectively AE,
AI, AO, EI, EO and IO.

Another example is the generic model of agent architecture (Generic Agent
Model: GAM) [4], based on the DESIRE methodology and component model
[3]. It includes a set of components (e.g., interaction management, information
maintenance) each dedicated to a specific type of processing (see Figure 3, im-
ported from [4]). The GAM generic model (also a framework) has been instan-
tiated to model (retro-engineer) various agent architectures, such as BDI, and
ARCHON.

74 J.-P. Briot, T. Meurisse, and F. Peschanski

A
Brick

E
Brick

I
Brick

O
Brick

AE Wrapper

A
I W

rapper A
O

 W
ra

pp
er

IO
 W

rapper

EI Wrapper
EO W

rapper

Fig. 2. VOLCANO architecture

Fig. 3. DESIRE GAM architecture

Architectural Design of Component-Based Agents 75

Situation recognition
and goal activation

Situation recognition
and goal activation

Planning and
scheduling

Planning and
scheduling

Planning and
scheduling

Situation recognition
and goal activation

Social model

Mental model

World model

Perception Communication Action

Knowledge
base

Local
planiÞcation

Cooperative
planning

Behavior

Fig. 4. InteRRaP architecture

2.3 Level-Based Style

Another approach considers different various levels (and models) of knowledge,
reasoning and action, to structure the architecture, e.g., through the distinction
between world model, self model, and social model. A representative example is
the InteRRaP architecture [19] (see Figure 4, adapted from [19]). InterRRaP
is structured as a hierarchy of three layers, concurrently active: cooperative
planning, local planning, and reactive behaviour. The internal architecture of
each level follows the same model, based on situation recognition and planning.
A knowledge base structures the information manipulated by each layer, thus
respectively: social model, mental model, and world model. Two dual control
mechanisms between layers are considered: upwards activation request, to acti-
vate the layer above, and downwards commitment signal, to delegate execution
of commitments to the layer below.

2.4 Behavior-Based Style

A more radical style of decomposition, considers basic behaviors of the agent
as the units of (de)composition. An example is Rodney Brooks’ subsumption
architecture [7], in which various behaviors (e.g., random move, obstacle avoid-
ance. . .) are simultaneously active. They are organized within some fixed hierar-
chy and their associated priorities (see Figure 5, adapted from [7]). In practice,
a behavior may replace input data of the behavior situated below, as well as
inhibit its output data (for instance, in case of close obstacle perception, the
obstacle avoidance behavior may take control over other ones).

2.5 Discussion

The architectures that we surveyed are usually more tailored at a specific model
of agent (e.g., cognitive collaborative agent for the InteRRaP architecture,

76 J.-P. Briot, T. Meurisse, and F. Peschanski

replacementObstacle avoidance

Gradient following

Exploratory move

Home return

Random move

inhibition

Fig. 5. Subsumption architecture

situated agent or robot for subsomption architecture). They aim at genericity,
but, in practice, they may not provide enough flexibility. For instance, it is often
uneasy, in some case almost impossible, to replace and add, and moreover to
remove components. Also, the implementation of the architecture does not al-
ways follows the basic requirements of software components (output interfaces,
explicit connectors. . .),2 neither classical component models (e.g., JavaBeans).
The VOLCANO architecture clearly separates the components, but in order to
replace one component by another one, we are forced to re-implement the cor-
responding adaptors. The subsumption architecture actually represents an ab-
stract model of architecture, instantiated for a specific robot and objective (e.g.,
see Figure 5). It is concise but also difficult to evolve (e.g., add a component),
as the fixed hierarchy is the key of control between components.

We think that the behavior-based style of decomposition, as used in the sub-
sumption architecture, is somewhat radical, but it is also the closest to the
concept that we aim at decomposing: the behavior of the agent. A radical option
is then to only offer a model of component, in a way similar to a general software
component model such as JavaBeans, without a specific agent architecture. The
main difference is that the control aspects, and not just the functionalities, must
be also made composable in a flexible and open way, in order to replace the fixed
hierarchical control model of the subsumption architecture. We propose that, by
keeping in line with the idea of a component model, control is specified/reified
through control ports and connexions (see Section 3.1), in order to represent
arbitrary patterns of control flow.

2 The JADE architecture [1] offers some basic support for the designer to construct
an agent as a set of behaviors (instances of class Behaviour). Some subclasses,
e.g., CompositeBehaviour and ParallelBehaviour, provide basic structures for con-
structing hierarchies of behaviors or/and for expressing control structures, e.g., the
most advanced one, FSMBehaviour, relies on finite state automata. Meanwhile, JADE
behaviors are not real components (no output interface/ports nor connectors), thus
the architecture of an agent is still partly hidden within the code.

Architectural Design of Component-Based Agents 77

3 The MALEVA Model of Component

As has been explained above, the objective of the MALEVA agent component
model is to help in incremental design and construction of agent behaviors by
composing simpler behaviors, encapsulated as software components.

3.1 Data Flow and Control Flow

In MALEVA, a distinction is made between the activation control flow and the
data flow connecting the components. As we show in Section 3.2, this charac-
teristic and specificity of our model, which decouples the functional architecture
from the activation control architecture, makes components more independent
of their activation logic and thus more reusable. Consequently, we consider two
different kinds of ports within a component:

– data ports. They are used to convey data transfer (one way) between com-
ponents. Note that data ports are typed, as discussed in Section 6.1.

– control ports. A behavior encapsulated in a component is activated only when
it explicitly receives an activation signal through its input control port. When
the execution of the behavior is completed, the activation signal is transfered
to its output control port.

In addition to the semantic distinction between data ports and control ports,
specific to MALEVA, we find the common structural distinction between input
ports and output ports. Table 1 summarizes that.

Table 1. Data and control ports

Data Control
Input port Data consumption Activation entry point

Output port Data production Activation exit point

Connexion Data transfer Activation transfer

3.2 An Introductory Example

Figure 6 shows a first and very simple example of assembly/composition of com-
ponents: a sequence of two components. Component B is activated after the
computation of component A completes. Regarding data, component B will con-
sume the data produced by component A only after computation of A completes.
In this figure, as well as the following ones, data flow connexions are shown in
solid lines, and control flow connexions in dotted lines.

Figure 7 recombines the two same components, but this time activated con-
currently. Note that the control connexions have been changed accordingly, but
not the data connexions. The semantic is analog to the pipes and filters [23]

78 J.-P. Briot, T. Meurisse, and F. Peschanski

Fig. 6. Sequential activation of two components

Fig. 7. Concurrent activation of two components

architectural style: component B consumes what A produces while they are both
active simultaneously.

This simple example is a first illustration of the possibilities and flexibility
in controlling activation of components. One may describe active autonomous
components (with an associated thread), explicit sequencing or any other form
of combination.3 Flow of control is specified outside of the components, which
provides more genericity on the use of components. The designer of the applica-
tion also has a fine grained control over activation policies between components.
Making possible the control of temporal dependences between behaviors - which
are usually left implicit -, independently of behaviors functionalities, helps ex-
perts at experimenting with various strategies, at comparing results with the
target models, and at quantifying the impact on biases [6].4

3 An additional dimension, the mode of activation of components, which could be
asynchronous or synchronous, will be briefly addressed in Section 6.2.

4 For instance, [14] shows that results of simulations can be found biased in cases
where the scheduling of the actions within an agent remains deterministic.

Architectural Design of Component-Based Agents 79

3.3 Designing Agent Behaviors

Designing and constructing agents for a given application should ideally con-
sist mostly in assembling existing behavior components. We therefore assume
that there is a library of behavior components associated to the application do-
mains targeted. A component may be primitive (the behavior is written in the
underlying language, e.g., Java) or composite,5 as the encapsulation of a compo-
sition (assembly) of components.

4 A First Example: Bottom-Up Design of Prey and
Predator

The MALEVA model has been particularly targeted at and used for multi-agent-
based simulation (MABS) applications [22], in various domains such as ecology,
ethology, and economy. In multi-agent-based simulations, various elements of the
phenomena modeled and their interactions are explicitly modeled and studied.
The two examples described in this paper show some facets of design and of
potential reuse.

Our first example will define behaviors of situated agents within an ecosystem.
First step is thus to define a general architecture for situated agents.6

4.1 Abstract Architecture of a Situated Agent

A situated agent senses its environment (e.g., position of the various agents near
by, presence of obstacles, presence of pheromones. . .) through its sensors. These
data are used by its (internal) behavior to produce data for its effectors, which
will act upon the environment (e.g., move, take food, leave a pheromone, die. . .).
The general architecture of a situated agent usually follows the computational
cycle:

sensors → behavior → effectors

and is shown at Figure 8.

4.2 Prey Behavior

We will now define and construct the basic behaviors of preys and predators. By
following a bottom up approach, we first define a set of elementary components,
5 It corresponds to a notion of structural composition as opposed to, or rather in ad-

dition to, functional composition (simple assemblage). Such encapsulation of assem-
blages of components represents a very powerful abstraction principle. Of course, a
composite may provide extra functionalities (and control specifications) at its higher
abstraction level, making it a true component on its own. Another example support-
ing the notion of composite component is the Fractal component model [8].

6 Note that for other applications, e.g., micro-simulation [6], agents are not necessarily
situated (within an environment) and thus do not use any sensor/effector. Other
applications agents could also use inter-agent communication (ACL) modules.

80 J.-P. Briot, T. Meurisse, and F. Peschanski

Fig. 8. General architecture of a situated agent

representing the basic behaviors of preys and predators, that we name: Flee
(fleeing a predator), Follow (following a prey), and Exploration (exploration
through a random move, which represents the default behavior). Then we will
compose them, to represent the following agent behaviors: Prey and Predator.

A prey flees the predators being located within its field of perception. If no
predator is close (sensed), the prey explores its surroundings by moving ran-
domly. Thus, we construct the Prey behavior as the composition of the following
three components: Flee, Exploration, and a control component named Switch.

4.3 Control Components

The Switch control component reifies the standard conditional structure into a
special kind of primitive component.7 The condition is the presence or absence
of an input data. The behavior of Switch, once being activated (receiving an
activation signal), is as follows:

IF data is received through If (input data port)
THEN transfer control through Then (output control port)
AND send data through Then (output data port)
ELSE transfer control through Else (output control port)

The architecture of the Prey behavior follows this pattern and is shown at Fig-
ure 9. If a predator has been detected (some data representing the predator loca-

7 Note that the MALEVA standard library includes other control components, analog
to standard control structures (e.g., repeat loop) or synchronization operators (e.g.,
barrier synchronization) [16]. They will not be described in this paper.

Architectural Design of Component-Based Agents 81

Fig. 9. Prey behavior

tion has been received on the input data port),8 Switch transfers control through
its Then output control port, which activates the Flee behavior. Then Flee can
compute a move data based on the location of the predator, and send it through
its output data port. The move data is finally transfered to Prey output data port
and then to the effector, to produce a move of the agent on the environment. If
no predator has been sensed (no data received), Switch transfers control through
its Else output control port, which activates Exploration behavior. Note that
Exploration does not need a data input to produce a move data.

4.4 Predator Behavior

We may now reuse the Prey behavior component to construct the behavior
of a predator which follows the preys while fleeing his fellows predators, and
otherwise explores its surroundings. The predator behavior may be defined as a
prey behavior (it flees other predators and otherwise carries out an exploration
movement), to which is added a behavior of predation (it follows preys that he
could perceive). According to our compositional approach, we define Predator
behavior component as a new composite behavior embedding as it is the existing
Prey behavior component (see the result in Figure 10). Note that in our current
design, hunger (predation) has priority over fear (fleeing), as Prey is activated
by Predator. Other combinations could be possible.
8 We assume that the input data port (perception of a predator in the environment)

and the output data port of the Prey behavior have been connected to the correspond-
ing sensor and effector data ports, along the general architecture of a situated agent,
shown at Figure 8.

82 J.-P. Briot, T. Meurisse, and F. Peschanski

Fig. 10. Predator behavior (with Prey as a sub-component)

5 A Second Example: Top-Down Design of Ants

This second example illustrates a top down design of agent behaviors. The com-
plete application was the reengineering in MALEVA [15] of the modeling and
simulation of ant colonies for the study of their sociogenesis (Alexis Drogoul’s
MANTA framework [10]). Various types of ant agents are considered: eggs, lar-
vae, worker ants, queens.9 In this paper, we focus on the top down design of the
behavior of an ant worker.

5.1 The Living Pattern

The first step of our design identifies some feature common to each living agent,
the ability to age (and ultimately to die). Therefore, we design a behavior, partly
abstract, named Living, shown at Figure 11. It includes 4 sub-behaviors/comp-
onents: behavior CheckAgeLimit (it includes a variable age, incremented for
each activation step and compared with the agent age limit); behavior Die;
abstract behavior Behavior; and a Switch control component. When the agent
reaches its age limit, CheckAgeLimit emits a die data. Then Switch activates
Die, which in turn emits suicide data, ultimately conveyed to the actuators

9 The metamorphosis process - from egg to larva and then to ant or queen - leads to
the issue of behavior evolution and architectural dynamicity, see Section 8.

Architectural Design of Component-Based Agents 83

Fig. 11. Living abstract behavior

(in practice, it may e.g., remove the agent from the environment). Otherwise,
Behavior is activated by Switch.

This design is a simplified form of a design pattern [11].10 Living implements
that pattern as some “mini black-box framework”, where the hot spot is the
abstract component Behavior. To construct a specific agent behavior, we replace
(instanciate) the abstract component Behavior with a concrete behavior, e.g.,
specific to an ant, egg, larva or queen [15].

5.2 The Behavior of an Ant

A worker ant has a relatively complex behavior because its various types of
activities: move, pheromone following, egg carrying, egg caring. It is simplified
in this paper. First, we instanciate Living into a concrete behavior specific
to ants, named Ant. In practice, Behavior is replaced by a concrete behavior,
named AntActivity.11 Result is shown at Figure 12.

We now define the specific behavior of the ant, named AntActivity, shown
at Figure 13. The ant explores its surroundings through a random movement
(Exploration behavior), unless it perceives some stimulus (ManageStimulus
10 We have identified others, e.g., “exploration unless perception”, used by the Prey

behavior, in Section 4, and which will be reused for the AntActivity ant internal
behavior, in Section 5.2. A further discussion about MALEVA design patterns may
be found in [15].

11 One may note that AntActivity has an additional output data port, in order to
distinguish the two possible outputs: action (e.g., leave a pheromone or take food)
and move, and their associated effectors and types. An alternative simplification is
to consider a single output data port including all types of actions (including move).

84 J.-P. Briot, T. Meurisse, and F. Peschanski

Fig. 12. Ant behavior

Fig. 13. AntActivity behavior: first level of decomposition of Ant behavior

behavior). Thus, AntActivity reuses the “exploration unless perception” pat-
tern, already used for Prey and Predator behaviors (see Figures 9 and 10).

Because of space limitation, we do not detail the design of ManageStimulus
behavior (follow gradient and take action when reaching a local maximum).

Architectural Design of Component-Based Agents 85

Fig. 14. Ant behavior: complete decomposition

The complete architecture of the ant behavior (including 3 levels and 14 com-
ponents) is shown at Figure 14.

6 Implementation

6.1 Evolution of Implementation

The MALEVA component model and its associated prototype CASE tool have
been implemented successively in three versions and languages: Delphi, Java [15],
and C++ [16].

The Java-based reimplementation of MALEVA added typing to the compo-
nents ports and connexions. This turned out to be useful for verifying interface
compatibility between components. In addition, sub-typing helps at defining
more abstract components. Java also supports inspecting various information
about a component, thanks to its introspection facilities (API and tools). Thus,
the designer can easily query a component to obtain its internal information.

86 J.-P. Briot, T. Meurisse, and F. Peschanski

The Java implementation, actually based on JavaBeans, also gave opportu-
nity to compare our MALEVA prototype component model with an industrial
component model. Note that the JavaBeans model conforms to a publish/
subscribe communication model, but the implementation still relies on standard
method call. In our implementation of MALEVA, a mailbox (FIFO queue of
messages) is associated to each input data port and to the input control port,
in order to decouple data transfer and actual activation.

6.2 Modes of Activation and Scheduling

At the level of the general scheduler, two alternative modes (or approaches) of
activation have been implemented: an asynchronous mode and a synchronous
mode. In the asynchronous mode, the different agents (and components) evolve
independently. It may be more efficient, specially in the case of distributed imple-
mentation. Meanwhile, unless the designer also uses explicit control connexions
between agents, the different agents may not be synchronised (some can com-
pute ahead of others), depending on their relative processing speed. In the syn-
chronous mode, the scheduler sends next activation trigger once all behaviours
have finished, which ensures but also imposes a global synchronization. The
choice between the two modes depends on the requirements for the application
(see, e.g., [14] and [16] for more discussion).

6.3 From Methods to Components

The MALEVA prototype CASE tool includes a library of components (be-
havioral components and control components) ; an editor of connexion graphs
(named CGraphGen, which stands for concurrent graph generation) ; a graphical
environment for constructing virtual environments for situated agents ; and a
run time support for scheduling and activating agents.

An interesting feature of CGraphGen [16] is the importation of actual Java
code and its reification into MALEVA components. The granularity considered
is a Java method. After specifying the class and method name, and its signa-
ture, CGraphGen automatically generates a corresponding component whose
data ports correspond to the method signature: one input data port for each
parameter, and one optional output data port for the result (none in the case of
void). Two control ports (one input and one output) are also implicitly added.
CGraphGen allows graphical connexion of both data-flow and control-flow be-
tween components, and the creation of composite components.

7 Related Work

In addition to the agent architectures already discussed in Section 2, we now
quickly refer to a few additional related works, still focusing on the agent ar-
chitectures offering some modular or compositional support at the level of one
agent. See also, e.g., [2], for a recent more general survey of languages, architec-
tures and platforms for multi-agent systems.

Architectural Design of Component-Based Agents 87

Like MALEVA, JAF (Java Agent Framework [13]), also based on JavaBeans,
uses components to decompose behaviours of agents. JAF does not explicitly
separate control flow from data flow. But it proposes some interesting match-
making mechanism, where each component specifies the services that it requires.
At component instantiation time, JAF looks for the best correspondence between
the requirements specification and the components available. Another difference
between JAF and MALEVA is at the level of behaviour decomposition. JAF de-
composition appears at a relatively high level, whereas MALEVA promotes a fine
grain behaviour decomposition, and its management through explicit control.

The MaSE methodology [9] includes a modular representation of agent be-
haviours as sets of concurrent tasks. Each task is described as a finite state
automaton and is implemented as an object with a separate thread. A task can
communicate with other tasks, inside the same agent, or with a task of another
agent, through event communication. A first difference with MALEVA is that
the implementation of MaSE concurrent tasks does not use components with
explicit input and output ports. Another difference is that MALEVA provides
more explicit control of activation, whereas MaSE concurrent tasks rely partly
on some implicit control (inter-tasks implicit concurrency and synchronous mes-
sage reception discipline). That said, as the MaSE methodology is actually very
general, we could imagine using several of the MaSE steps to produce MALEVA
components.

The DESIRE methodology and component model [3] is more high-level and
knowledge-oriented than MALEVA and is more aimed at cognitive agents. It is
based on a formal description considering separately a process/component level
and a knowledge level. This approach enables some possibilities of verification, but
at the cost of some added complexity in specifications. As opposed to MALEVA,
DESIRE does not provide a fine grained control model for components.

8 Further Issues and Future Directions

A first issue, for our current component architecture, is that simulation de-
signers must design activation models (control flow) from a relatively low-level
perspective, with explicit manipulation of connexions. Abstract components and
their related design patterns help at capitalizing and reusing experiences. While
several patterns and reusable abstracts components have been tested and doc-
umented in various experiments (see, e.g., in Section 5 and also in [15]), we are
still far from a complete library of such reusable activation patterns. We wish to
provide the designers with several types of libraries: behavior components (e.g.,
Exploration) ; abstract components, e.g., Living ; control components, e.g.,
Switch ; and “system” components, e.g., for perception (sensors), action (effec-
tors), inter-agent communication, migration. In addition, the component-based
design of agents and the support of CASE tools using possible information (e.g.,
typing) should help in assisting the designer to analyse existing designs and to
create new ones.

88 J.-P. Briot, T. Meurisse, and F. Peschanski

A second issue is that the experience with the specification of control through
connexions shows that, in case of large applications, the connexion graphs may
become large, although they may be hierarchical and encapsulated in composite
components (e.g., see the recursive design of an ant behavior in Section 5). Some
radical alternative approach to reduce the control graph complexity, and also to
make it more accessible to formal analysis, is to abstract it in an adequate for-
malism. We think that a process algebra (such as CCS) [17] could allow the
concise representation of complex activation patterns. The idea is somehow ana-
log to coordination languages, but for very fine grained components. The starting
point is to model data used for control (e.g., presence of prey, of predator, of
pheromone. . .) as channels and synchronize activity of behaviors on them. The
result is a compact term to express a control graph analog to the example of
prey and predator (in Section 4):

isPrey.Follow || isPredator.F lee ||
(isNoPrey.Exploration + isNoPredator.Exploration)

where isPrey, isPredator, isNoPrey and isNoPredator are channels, connected
to the sensors of the agent; and Follow, Flee, and Exploration are processes rep-
resenting behaviors. Such formal characterization would also allow the semantic
analysis of such specifications, for example through model checking.

A third issue is the dynamicity of behaviors. An example of modeling is the
metamorphosis process of ants (egg, larva, ant), introduced in Section 5. Cur-
rent implementation strategy relies on a specific meta-component to manage
the reconfiguration and reassemblage of behaviors. We are currently considering
using a higher level mechanism, based on concepts of configurations, roles and
policies, such as [12]. Last, to allow the dynamicity of formalisms for activation
patterns, we are considering models of process algebras supporting dynamicity
and channel name passing, such as the Pi-calculus [18].

9 Conclusion

In this paper, we presented some experience in using a component model to
design and implement agents. This model is relatively original in the explicit
management of activation control through control ports and connexions, by ap-
plying the concept of component to the specification of control. Several exper-
iments illustrate how MALEVA can support various forms of potential reuse
through: structural composition of behaviors, abstract components and design
patterns, and specialization of intra-agent scheduling policies (that latter issue
is discussed in [6]).

Considering rationales for agent architectures, we believe that there is no
ultimate best agent architecture, as it depends on the application domain and
requirements. General purpose (also named hybrid) architectures, like InteRRaP,
which attempt at reconciling both cognitive and reactive architectures, turn out
to be powerful, but also complex. On the contrary, our architecture focuses on
a lower-level agent component model with a fine-grained control. It was initially

Architectural Design of Component-Based Agents 89

more targeted at reactive agent models for multi-agent simulation, but we believe
that the MALEVA component model is more general, the issue being more in
providing sufficiently rich libraries of components and abstract architectures,
supporting the types of architectures and applications targeted (e.g., interaction
protocols for e-commerce, reasoning components for rational/cognitive agents,
etc.). More generally speaking, we believe that some features of our architecture
model may be transposed, and that making control available at the composition
level may help the use of components within frameworks of applications vaster
than those in which they had been initially thought.

Acknowledgement

We would like to thank Marc Lhuillier, Alexandre Guillemet and Grégory Häık,
for their contribution to the MALEVA project.

References

1. F. Bellifemine, A. Poggi, G. Rimassa, Developing Multi-Agent Systems with
a FIPA-compliant Agent Framework, Software Practice and Experience, (31):
103–128, 2001.

2. R. Bordini, L. Braubach, M. Dastani, A. El Fallah Seghrouchni, J.J. Gomez-Sanz,
J. Leite, G. O’Hare, A. Pokahr, A. Ricci, A Survey of Programming Languages
and Platforms for Multi-Agent Systems, Informatica, 30:33–44, 2006.

3. F. Brazier, B. Dunin-Keplicz, N.Jennings, J. Treur, Formal Specification of Multi-
Agent Systems : a Real-World Case, 1st International Conference on Multi-Agent
Systems (ICMAS’95), San Francisco, CA, USA, MIT Press, 1995, pp. 25–32.

4. F. Brazier, C. Jonker, J. Treur, N. Wijngaards, Compositional Design of a Generic
Design Agent, Design Studies Journal, (22):439–471, 2001.

5. J.-P. Briot, Composants logiciels et systèmes multi-agents, Technologies SMA et
leur utilisation dans l’industrie, A. El Fallah-Seghrouchni (ed.), Collection IC2,
Hermès/Lavoisier, France, to appear in 2007.

6. J.-P. Briot, T. Meurisse, A Component-based Model of Agent Behaviors for Multi-
Agent-based Simulations, 7th International Workshop on Multi-Agent-Based Sim-
ulation (MABS’06), AAMAS’2006, Japan, May 2006, pp. 183–190.

7. R.A. Brooks, A Robust Layered Control System for a Mobile Robot, IEEE Journal
of Robotics and Automation, 2(1):14–23, March 1986.

8. E. Bruneton, T. Coupaye, M. Leclerc, V. Quema, J.-B. Stefani, An Open Compo-
nent Model and its Support in Java, 7th International Symposium on Component-
Based Software Engineering, No 3054, LNCS, Springer-Verlag, May 2004, pp. 7–22.

9. S.A. DeLoach, Multiagent Systems Engineering: A Methodology and Language for
Designing Agent Systems, Agent-Oriented Information Systems (AOIS’99), Seat-
tle, WA, USA, May 1999.

10. A. Drogoul, B. Corbara, D. Fresneau, MANTA: Experimental Results on the Emer-
gence of (Artificial) Ant Societies, in Artificial Societies: the Computer Simulation
of Social Life, N. Gilbert and R. Conte (eds), UCL Press, U.K., 1995.

11. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of
Reusable Object Oriented Software, Addison-Wesley, 1995.

90 J.-P. Briot, T. Meurisse, and F. Peschanski

12. G. Grondin, N. Bouraqadi, L. Vercouter, MaDcAr: an Abstract Model for Dy-
namic and Automatic (Re-)Assembling of Component-Based Applications, 9th
International SIGSOFT Symposium on Component-Based Software Engineering
(CBSE’2006), No 4063, LNCS, Springer-Verlag, 2006, pp. 360–367.

13. B. Horling, A Reusable Component Architecture for Agent Construction, Technical
Report No 1998-49, Computer Science Dept., UMASS, MA, USA, October 1998.

14. B. G. Lawson, S. Park, Asynchronous Time Evolution in an Artificial Society Mode,
Journal of Artificial Societies and Social Simulation, 3(1), 2000.

15. T. Meurisse, J.-P. Briot, Une approche à base de composants pour la concep-
tion d’agents, Journal Technique et Science Informatiques (TSI), 20(4):583–602,
Hermès/Lavoisier, France, April 2001.

16. T. Meurisse, Simulation multi-agent : du modèle à l’opérationnalisation, Thèse de
doctorat (PhD thesis), Université Paris 6, Paris, France, July 2004.

17. R. Milner, A Calculus for Communicating Systems, Springer-Verlag, 1982.
18. R. Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge Uni-

versity Press, 1999.
19. J.P. Müller, M. Pischel, The Agent Architecture InteRRaP: Concept and Applica-

tion. Technical Report RR-93-26, DFKI, Saarbrucken, Germany, 1993.
20. J.P. Müller, Control Architectures for Autonomous and Interacting Agents: A Sur-

vey, In Intelligent Agent Systems: Theoretical and Practical Issues, No 1209, LNAI,
Springer-Verlag, 1997, pp. 1–26.

21. P.-G. Ricordel, Y. Demazeau, Volcano, a Vowels-Oriented Multi-Agent Platform,
2nd International Workshop of Central and Eastern Europe on Multi-Agent Sys-
tems (CEEMAS’01), No 2296, LNCS, Springer-Verlag, 2001, pp. 253–262.

22. S. Moss, P. Davidsson (eds), Multi-Agent-Based Simulation, 2nd International
Workshop on Multi-Agent Based Simulation (MABS’2000) - Revised and Addi-
tional Papers, No 1979, LNCS, Springer-Verlag, 2001.

23. M. Shaw, D. Garlan, Software Architectures: Perspective on an Emerging Disci-
pline, Prentice Hall, 1996.

24. Y. Shoham, Agent Oriented Programming, Artificial Intelligence, 60(1):51–92,
1993.

Part II

Comparing Apples with Oranges: Evaluating

Twelve Paradigms of Agency

Linus J. Luotsinen, Joakim N. Ekblad, T. Ryan Fitz-Gibbon,
Charles Andrew Houchin, Justin Logan Key, Majid Ali Khan, Jin Lyu,
Johann Nguyen, Rex R. Oleson II, Gary Stein, Scott A. Vander Weide,

Viet Trinh, and Ladislau Bölöni

School of Electrical Engineering and Computer Science
University of Central Florida

Orlando, FL

Abstract. We report on a study in which twelve different paradigms
were used to implement agents acting in an environment which borrows
elements from artificial life and multi-player strategy games. In choosing
the paradigms we strived to maintain a balance between high level, logic
based approaches to low level, physics oriented models; between impera-
tive programming, declarative approaches and “learning from basics” as
well as between anthropomorphic or biologically inspired models on one
hand and pragmatic, performance oriented approaches on the other.

Instead of strictly numerical comparisons (which can be applied to
certain pairs of paradigms, but might be meaningless for others), we had
chosen to view each paradigm as a methodology, and compare the design,
development and debugging process of implementing the agents in the
given paradigm.

We found that software engineering techniques could be easily ap-
plied to some approaches, while they appeared basically meaningless for
other ones. The performance of some agents were easy to predict from
the start of the development, for other ones, impossible. The effort re-
quired to achieve certain functionality varied widely between the different
paradigms. Although far from providing a definitive verdict on the ben-
efits of the different paradigms, our study provided a good insight into
what type of conceptual, technical or organizational problems would a
development team face depending on their choice of agent paradigm.

1 Introduction

Researchers have designed a bewildering variety of paradigms for the control of
agents. Even if we restrict our inquiry to the case of embodied agents, that is,
artifacts which operate either in the physical world or a simulation of it, vir-
tually every paradigm of artificial intelligence, software engineering or control
theory was deployed with more or less success. However, wide ranging compar-
isons of agent paradigms are rare. When new methods and paradigms are intro-
duced, they are compared with only several, closely related approaches which

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 93–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

94 L.J. Luotsinen et al.

are considered direct competitors of the proposed paradigm. Making or revisit-
ing comparisons between paradigms is a controversial, difficult and hard-to-sell
work. One might argue that a researcher might better spend his or her time in
designing new paradigms or improving existing ones instead of comparing, say,
swarm algorithms with affective computing in the design of embodied agents.
There might be people offended by the results, with reasonable claims that the
methodology was incorrect, the implementation of the paradigm substandard,
or simply, the measured quantity is not relevant to the given paradigm.

The fundamental question, of course, is whether if any of these comparisons
make sense. We argue that if both paradigms A and B can be used in the
implementation of the same requirements, then these two paradigms
can (and indeed, should be) compared. That is not to say that the com-
parison is easy or that it can be reduced to a single numerical “score”. Different
paradigms have different strengths and weaknesses, and the goal of a comparison
study is to shed light on these differences. Although we do not expect definite
answers on questions like “which paradigm would eventually lead to an agent
passing the Turing test”, we can provide insight into lesser but still important
questions such as:

– Would the implementation provide adequate performance?
– Can a rigorous software engineering process be applied to the development?
– Can the performance be predicted?
– Can human expertise in the problem domain be transferred to the agent?
– What will the development effort be?
– Will the resulting agent be predictable in its actions?

The remainder of this paper is organized as follows. In Section 2 we present
the Feed-Fight-Multiply game, our control problem. We succinctly describe the
twelve agents we implemented in Section 3. In Section 4 implementation effort
and complexity measurements are presented for each agent. We detail our find-
ings in Section 5.

2 The Feed-Fight-Multiply World

To study the benefits and drawbacks of various agent paradigms, we decided to
place them in a virtual environment in which many of the real world challenges
are reflected. We did not choose one of the existing environments, because the
existing implementations would have skewed the result of the comparison. One
requirement towards the environment was the existence of multiple paths to suc-
cess. We expected that agents implemented in various paradigms will have a
different external behavior as well. By measuring success as the conformance to
a predefined behavior we would have favored some paradigms and disadvantaged
others. In addition, having multiple paths to success is a quality of most natural
environments and many artificial ones [6].

Upon these considerations, we implemented the Feed-Fight-Multiply (or Mate)
game, which borrows elements from turn-based multi-player strategy games and

Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency 95

artificial life. Agents are sharing a two-dimensional environment having accessible
zones and obstacles. The agents can sense their environment within the range of
their sensors. Food resources appear at random points in the environment; con-
suming food increases the energy level of the agents. Finally, agents can multiply
by (non-sexual) reproduction. The environment was implemented in the YAES
simulation environment [3]. Figure 1 shows a typical FFM game in progress.

Fig. 1. Screenshot of the Feed-Fight-Multiply environment

An additional concern was to choose the level of the services provided by
the environment. Evidently, natural environments do not provide any kind of
service, but this would make the implementation of the agents unduly difficult.
The guiding principle was that whenever the problem had a well known, standard
implementation, we had chosen to implement it in the environment, and provide
it as a service to the agents. These services included: the scanning of the sensor
range for agents and food, tracking of moving agents and identifying agent types.

Finally, instead of keeping a single score, we decided to record multiple pa-
rameters of the agent behavior. This meant that not only there were multiple
paths to success, but the final goals of the agents could be different as well. Of
course, all agents were required to work towards their survival, but besides that,
the criteria for success could be maximum amount of resources gathered, sur-
vival on minimum amount of resources, largest number of agents killed, number
of individual agents of the same type at the end of the game, or others.

96 L.J. Luotsinen et al.

3 Twelve Agents, Twelve Paradigms

We have developed twelve agents, implemented in twelve different paradigms of
agency. In choosing the paradigms we strived to maintain a balance between
high level, logic based approaches and low level, physics oriented models; be-
tween imperative programming, declarative approaches and “learning from ba-
sics” as well as between anthropomorphic or biologically inspired models on one
hand and pragmatic, performance oriented approaches on the other. The imple-
mented agents are concisely described in Table 1. The developers were instructed
to develop paradigm-pure implementations and to design the agents such that
the “spirit” of the paradigm is best expressed. When the paradigm could cover
only some of the required functionality, the developers could use some limited
heuristics.

Table 1. Concise description of the twelve implemented agents

Name Paradigm Paradigm
coverage

Team-
work

Offline
Learning

Realtime
adapt.

AffectiveAgent Affective model,
anthropomorphic
lifecycle

Limited No No Yes

GenProgAgent Genetic program-
ming

Full Yes Yes No

Reinforcer Reinforcement learn-
ing

Full Yes Yes No

CBRAgent Case based reasoning Full No Yes Yes

RuleBasedAgent Forward reasoning Full Yes No No

NaiveAgent Näıve programming
(scripting)

Full Yes No No

GamerAgent Game theory Limited Yes No No

CrowdAgent Crowd model Limited Yes No No

NeuralLearner Neural networks Full No Yes No

SPFAgent Social potential fields Limited Yes No No

CxBRAgent Context based rea-
soning

Full No No No

KillerAgent Simple heuristics,
with path-planning

Full No No No

3.1 AffectiveAgent: Anthropomorphic and Affective Model

The basic premise behind the affective agent paradigm is that the agent behaves
with an emotional frame of reference with which to weight its decisions. Besides
providing the agent with emotional states such as anger, contentment or fear,
we also made it to mimic the basic lifecycle of humans: agents have a childhood,
maturity and old age, with their corresponding goals and priorities. In broad

Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency 97

lines, our implementation is an adaptation of the agents from [17]. The affective
model plays two roles in the behavior of the agent: action selection (e.g., what
to do next based on the current emotional state) and adaptation (e.g., short or
long-term changes in behavior due to the emotional states).

The short term variables which control the behavior of the agent are the
action tendency and the conflict tendency. The dynamic action tendency is the
probability whether an agent will fight or flee in a given situation. To adapt the
action tendency to the outcome of the agent’s interactions, the action tendency
is updated by the adaptation rule depending whether the agent is experiencing
loss or success.

This dynamic action tendency is used in calculating another dynamic parame-
ter of the adaptive agents, namely, conflict tendency. This parameter determines
whether an agent seeks conflicts or avoids them. Emotive states such as anger
or fear are determined in terms of ranges of the action and conflict tendency.

Besides the mood of agent, its behavior is determined by its age. The agent
remains content, without adaptation, until the agent comes of age, which is set,
with apologies to Tolkien, to 33 cycles. After the age of maturity, the agent’s
conflict tendency is adapted every 10 cycles. To avoid agents becoming bogged
down in an emotional quagmire, a catalyst was installed in the way of a mood
swing. At 50 cycles and every 25 subsequent cycles, the agent’s current action
tendency is randomly reset to a new value and then action tendency and conflict
tendency are recalculated. This provides a potentially dramatic change in mood.
An agent could easily shift from an action tendency of 0.8 angry to 0.3 fearful.

The age of maturity was also employed to delay the agent’s mating. Moreover,
the agent’s mating is also limited by mood and by energy level. An agent that is
angry cannot mate. Only an emotional state of fearful or content will allow the
agent to mate.

3.2 GenProgAgent: Genetic Programming

Genetic Programming (GP) [10] is an evolutionary algorithm in which the evo-
lutionary units are computer programs or functions described by tree structures
consisting of conditional branches, mathematical operators, variables and con-
stants [2]. We based GenProgAgent on the generational genetic algorithm [8].

The evolution of the behavior of the agent is split in two stages. In the first
stage we evolve tactical behaviors, which control primitive actions such as eat
food, explore, attack and multiply. In the second stage we evolve game strategies
by combining the behaviors from the first stage using Finite State Machine
(FSM) structures.

Stage 1 - Evolving Tactical Behaviors. Four types of primitive behaviors
were created: Eat-food, Explore, Attack and Flee. The eat-food behavior was
generated using a fitness function which defines an ideal individual as an agent
that does not collide with obstacles and that eats all the available food resources.
The fitness is derived based on the number of failed move sequences, the length of
the failed move sequences and the amount of food eaten. Although the algorithm

98 L.J. Luotsinen et al.

did not find an optimal solution, the best individual was able to, in most cases,
effectively avoid obstacles and consume available food resources. The behaviors
for Explore, Attack and Flee can be evolved similarly, or can be created from the
Eat-Food behavior by replacing the heuristics. As we did not manage to evolve
optimal primitive behaviors which reliably avoided being stuck on obstacles, we
decided to augment the evolved behaviors with helper heuristics. The heuristics
used provide directions to closest food, opponent agent and unexplored areas
using A* search.

Stage 2 - Evolving Game Strategies. With the tactical behaviors already
created, the next challenge is to decide which tactics to be applied at any given
moment. Tactical decision are considered the states of a finite state machine,
and we apply genetic programming to evolve the transition rules for these struc-
tures. Two types of game strategies were created: Balanced and Aggressive. The
balanced strategy seeks to create an agent that doesn’t specialize on any type
of behavior. The aggressive strategy seeks to create an agent that specialize on
attacking and killing other agents. The game strategies were generated in a FFM
game with 6 additional opponent agents. The purpose of the opponent agents
is to generate hostile and conflicting situations from which strategies resolving
these situations can be evolved.

To validate the game strategies that were evolved, we allowed them to execute
in the FFM game for 20 individual runs each of 4000 simulation cycles. Each run
was set up with 5 balanced strategy agents, 5 aggressive strategy agents, and 6
opponent agents.

Results show that the aggressive strategy was able to perform on average 23.45
successful attacks. This is more then twice as much as the balanced strategy was
able to do. The aggressive strategy involves no eating of food and few attempts
to flee when in conflict. The balanced strategy has on average 154.04 successful
eat attempts, map coverage of 23% and 10.57 successful attack attempts. The
balanced strategy is, as expected, more general then the attacker strategy as it
involves eating, attacking and more extensive exploring.

3.3 Reinforcer: Reinforcement Learning

Reinforcement Learning (RL) has the ability to learn in an unknown do-
main without prior knowledge [13]. The specific technique chosen for the
ReinforcementAgent was Temporal Difference (TD) learning. This approach
uses a table of state action pairs and their corresponding reward. If an action
leads to a good result, but this is not detected until several steps later, that good
result will immediately propagate back to the initial action and therefore favor
it in the future. The following formula was used in the ReinforcementAgent
implementation.

Q(st, at) = (1 − α) ∗ Q(st, at)
+ α ∗ (rt + γ ∗ max(Q(ss+t, at+1))) (1)

α = 1/(1 + visits(s, a)) (2)

Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency 99

Where α is related to the number of times that the state action pair has been
visited, γ is a user defined value between 0 and 1, Q(s, a) and r(s, a) is the value
and reward for current state action pair respectively.

The action set for the ReinforcementAgent is defined by 20 movement ac-
tions. Actions for eat, attack and flee are also included in the action set. The
state set consist of various energy level thresholds, possible actions to take in
each game round and on the objects and their directions as seen in the agent’s
sensors. In total there are 117760 state action pairs. Reinforcement is applied
using direct stimuli from the environment. Negative reinforcement is imposed
when the agent fail to perform some action or when the agent performs to many
consecutive actions of equal type. In similar manner, positive reinforcements is
given when an agent successfully performs some action.

The temporal depth level, or action chain depth, was empirically set to 5.
This value was chosen for several reasons. First, it needed to be greater than four
since the method of successive actions that returned to the previous state was
penalized in this system. Second, four moves and eat was the number of actions
required at a maximum to eat most food in the local map sensor range. Finally,
it was experimentally determined to be a good balance of delaying reward that
seemed to make sane decisions that were not too local and much longer the
global reward seemed to not converge easily.

3.4 CBRAgent: Case-Based Reasoning

Case-Based Reasoning (CBR) [1, 16] is the process of intelligently solving new
problems based on the previous similar problems. The basic steps of CBR are
retrieve, reuse, revise and retain. First, CBR retrieves the most relevant case
to the current problem at hand. The retrieved case is reused and revised to
incorporate minor variations in the solutions. This adaptation step gives CBR a
power to form more precise and accurate solutions to the future problems. Finally
the revised solution is retained for future use. [11] has shown the capability of
CBR as the intelligent search method for controlling the navigation behavior of
the autonomous robot. Our implementation is an adaptation of this model.

The case was represented using ten parameters (the closest food, enemy and
obstacle, the density of food and enemies, the ratio between the agents health and
the opponents, and parameters determining the actions currently available to the
agent). A weighting scheme was used to emphasize the more important features.
We have identified 19 historic cases that are selected based on the performance
of the agent in training simulations. Even with the small number of cases, the
CBR-based agent shows drastic improvement over the random behavior and can
be refined by adding more specific cases to the library. The selection of the case
was done with a distance matrix based selection. The reliability of the case based
on the previous failures is used as a weight in order to encourage the selection of
variety of cases. The reliability of the case is dynamically adapted depending on
whether the case can or cannot be successfully applied to the current situation.

After the action to be performed is selected by the CBR module, a set of
heuristics are used to adapt the action to the current environment. First, the

100 L.J. Luotsinen et al.

heuristic module checks whether the proposed action is feasible. In case of failure,
the reliability measure of the case which proposed the action is reduced. The
reliability of the case is used as a weight during the calculation of the distance
matrix, so that case with the less reliability will have greater distance in the
subsequent cycles. The second heuristic calculates the direction and the speed
of the agent movement. For instance, eating a food item requires the direction
toward the food and appropriate setting of the speed such that the agent stops
at the food item.

3.5 RuleBasedAgent: Forward Reasoning

A rule based system consists of an inference engine and knowledge base. The en-
gine’s reasoning mechanism uses a forward-reasoning technique. The knowledge
base contains a fact base and a rule base. The fact base acts as a repository of all
the truths that is seen or understood by the agent. The fact base is periodically
updated with new sensor data, which triggers the execution of rules. To reduce
the number of rules necessary to determine the behavior of the system, we have
decided to choose the atomic actions at a relatively high level of abstraction. For
example, a typical rule would have the consequent of movement towards a par-
ticular spot. Many additional intermediate rules could have been implemented
to determine exactly how to move towards the objective. Instead, once this rule
has been fired, a helper function is called to determine where the objective is
and binds various directional parameters of the consequent of the rule.

The utilization of these helper functions reduces the number of intermediate
rules that are necessary in the rule base and allows the developer to concentrate
on the upper level behavioral aspects of the agent in the rule base.

The ease of modification of the rules also allows the developer to quickly adjust
the behavior of the agent. This is primarily done through the change in salient
values of each rule. In addition to salient values, the speed, aggressive nature,
and other parameters are adjusted to yield an agent with completely different
behavior traits without any modification to the main engine of the system or
major change to the structure of the rules. The value of this property is that
major alterations can be made to the agent’s behavior with little modification
to the actual structure and knowledge. A result of this is an increase of time
dedicated to testing and tuning the agent for performance.

The rule base of the RuleBasedAgent agent consists of 15 rules. The con-
sequent of each rule may result in another fact pushed onto the fact base or
an action of the agent which would terminate the inference mechanism for that
simulation cycle. The salience of the rule is used to aid in conflict resolution as
well as the method of sorting in the rule base stack. This method prioritizes the
various rules which in turn define the behavior of the agent.

The RuleBasedAgent implements all the five basic commands of the game
(movement, feeding, fleeing, attacking and mating). Whenever a decision needs
to be taken, it is determined by synthetic facts in the fact base of the agent. For
instance, the choice to attack is determined by the fact AGGRESSIVE, while a
choice to flee is triggered by the fact TIMID. Whenever there is a potential for

Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency 101

an encounter with another agent, the decision of the aggressive or timid behavior
is made by the relative energy of the agents.

The rule based agent implements flocking behavior with other rule based
agents in its sensor range. If the fact base contains the synthetic fact FLOCK,
the move commands will be restricted to movements which allow the agent to
remain in the flock. The leader of the flock is the agent with the lowest id (the
oldest agent). Two scenarios occur when food is within range while in a flock.
If the GREEDY fact exists, the agent attempts to move and acquire the food
closest to them. If the fact does not exist, then the agent only attempts to move
and acquire a food resource if no other rule-based agent is closer to the resource.
The second scenario promotes efficient feeding while in the pack to avoid agents’
ineffective attempts to acquire the same resource. The agents in the pack also
synchronize their attack and fleeing behaviors. If the leader of the pack attacks
an agent, all the members of the pack will attack, regardless of their energy levels
or aggressiveness ratio.

3.6 NaiveAgent: Naive Programming, Scripting

Naive programming is a style of coding that allows the developer to hand-
optimize the code for a particular task. NaiveAgent relies on the hand scripting
of encounters for its success - a technique frequently used in the development of
multi-player games. For each possible encounter, a script was written specifying
how the agent should react. In the following we discuss some of the heuristics
used in the implementation:

Exploration: in the absence of other tasks, the NaiveAgent moves around the
environment with its maximum speed. This way, by covering more area, the
probability of finding food increases. It was found that the benefit of finding
more food outweights the extra expenditure of energy. The higher coverage also
increases the chance of encountering other agents, which is beneficial, given the
aggressive nature of the NaiveAgent.

Obstacle avoidance: Instead of using a sophisticated decision-making process to
guide the movement of the agent, the NaiveAgent simply moves right every
time it encounters an obstacle. To avoid getting stuck, a failcount variable is
incremented each time the agent makes a right turn. Only encountering another
agent or food particle can reset the fail count. If the fail count is greater than
five, the direction is chosen randomly.

Social behavior: If the NaiveAgent has a particle of food and another NaiveAgent
is within the sensor range, only the agent with the lowest energy level is allowed
to eat.

Aggression: Whenever a different agent is detected in the sensor range, and
the agents’ energy level is larger than 120% of the opponents, the NaiveAgent
attacks the opponent. If more than two agents are in the range, the NaiveAgent
attacks the weakest opponent.

102 L.J. Luotsinen et al.

3.7 GamerAgent: Game Theory

Game theory [9] is a mathematical formulation of cooperative or competitive
interaction between multiple entities. The key concern in game theory is to
extract rational (optimal) behavior from a given interaction between autonomous
agents. We model the FFM world as a zero-sum game.

The game consists of two entities, and each one of them can choose from two
strategies: attack or flee. The utility functions for each strategy are based on
the ratio of energy levels Δ and the likelihood of attack or flee by the other
agent based on previous interactions μ. We will denote Ua,b the utility of taking
action a when the opponent agent takes action b (where the actions can be A
for attacking and F for fleeing. The utility functions are defined as follows:

UA,A = (1 − μ) × 100 + Δ × 200 (3)
UA,F = μ × 100 + Δ × 200 (4)
UF,A = μ × 100 − Δ × 200 (5)
UF,F = (1 − μ) × 100 − Δ × 200 (6)

Given the matrix, the optimal strategy is chosen by summing up the utility
for each strategy. The strategy that provides the maximum utility is then chosen
as the optimal strategy.

Several heuristics were used to guide the agent to explore the map and eat
available food. The expert agent uses an internal data structure representing the
perceived game map as a base for the heuristics.
Heuristic 1: IF the agent is not able to eat since last 20 to 100 simulations
and there is no food or other agent in sight THEN move to the least explored
direction on the map for 50 simulation steps.
Heuristic 2: IF If the agent is not able to eat since last 100 to 200 simulations
and there is no food or agent in sight THEN obtain two random directions
(which are non-opposite to each other), and move in those directions for 200
simulation steps.
Heuristic 3: IF there is more than one agent in the sensor range THEN flee
in the direction which has the least number of agents.
Heuristic 4: IF the agent energy level reaches 35000 ∗ mateEnergyFactor
and there is no agent or food in sensor range THEN multiply and increase
mateEnergyFactor by 0.2.
Heuristic 5: IF food is visible in the sensor range and no agent is visible THEN
approach the food and eat it.

3.8 CrowdAgent: Crowd Model

Crowd modeling techniques traditionally take inspiration either from fluid
systems or particle systems. Both approaches deal with attractive, repulsive and
frictional forces; in addition, particle systems place motion decision with the in-
dividual [4]. In the implementation of the CrowdAgent, we chose the aggression

Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency 103

level of the agents as the grouping characteristic of the crowd. An agent will start
out with an initial aggression rating, A(0) = Ai, and then migrate towards the
aggression level of the agents surrounding them. This transition is governed by:

A(t + Δt) = A(t) +
(A(0) − A(t))3 ∗ Δt

am
+

n∑

b=0

(
(Ab(t) − A(t))

cosh(Ab(t) − A(t))2

)
· t

max((D2
b), 4)

(7)

Where Db is the distance between the current agent and agent b. The first
term of the equation guarantees that if the agent is not surrounded by other
agents it will return to its initial aggression level. If there are other crowd agents
in the neighborhood, the agent will have its aggression level pulled towards the
aggression level of each of the surrounding agents. The motion of an agent is
related to the position of all other agents in the sensor range, and what there
aggression levels are. The equation of motion used is:

X(t + Δt) = X(t) + Δt · Vx · ∑n
b=0

pFb·(X(t)−Xb(t))
max(Db)3),1) (8)

A similar function is calculated for the Y direction. Once again we are sum-
ming over all agents in the sensor range, but this time we also generate a factor
for the attraction between agents. The pF attribute is based on the aggression
of the agent of interest and the aggression of the agent in the sensor range. This
is an attractive/repulsive attribute which is defined by the piecewise function

f(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 ∗ pfA
pfB2 ∗ |A − Ab|2 + pfA

if |A − Ab| <= pfB

pfC ∗ 4 ∗
(
|A − Ab| − pfB+(10−pfB)

2

)2
− pfC

if |A − Ab| > pfB

(9)

The pF factor will give an attractive influence between 0 and pfB, the re-
maining distance will give a repulsive influence. As long as the attractive forces
are not made too large then the individuals will have the ability to separate from
a group, and rejoin another group.

As the particle grouping paradigm deals only with the motion of agent in the
presence of crowds, it was supplemented by a series of heuristics. In the absence
of other agents, the agent will perform random wandering. If food is detected, the
agent moves directly towards the food. The agent is reproducing with a random
probability whenever the energy level is high enough. A simple heuristic was
used for fighting: the agent tries to avoid coming in contact with other agents,
but if it comes into contact, it will attack. Finally, a simple heuristics is used for
obstacle avoidance. If an obstacle is in the direction you are trying to move then
keep turning to the right until you find an open direction and go that way.

In practice we found that there was a need for at least 4 agents of this type to
get any really dynamic interactions going, and this was also the needed level to
guarantee a long survival time, the algorithm performing the best with 6 agents
of this type, given the limitations of the environment size.

104 L.J. Luotsinen et al.

3.9 NeuralLearner: Neural Networks

Neural networks are a natural choice as the control paradigm for embodied
agents. An agent is trained with a set of training data representing sensory
inputs and desired actions as outputs, and a learning algorithm such as back-
propagation [15] is used to teach the agent the optimal behavior.

Other models, such as PolyWorld [18] used very general neural network struc-
tures and Hebbian learning. In many instances, the neural networks are used in
combination with genetic algorithms or evolutionary programming [7]. Our im-
plementation was based on a pure neural network approach, without heuristics
or evolutionary programming.

The defining difficulty in our implementation was the acquisition of train-
ing data, a problem noticed by other artificial life researchers as well [19]. The
problem is that there is no input-output mapping inherent to artificial life sim-
ulations. One must find a mapping that the neural network should estimate,
and then acquire data based on that mapping. This requires the pre-existence
of other agents, and the performance of the NeuralLearner will be determined
by the performance of the model agent. Based on this balance, this project has
two parts: search the entire input-output mapping space for a possible solution,
then teach that solution to a neural network agent.

All the decisions in a NeuralLearner agent are made by a single multilayer
neural network. The inputs to this network consisted of the agent’s current
energy level, the presence and direction of another agents, food and obstacles.
Also included in the input was whether or not the agent could currently eat,
mate, attack, or flee. The output of this network was an action selection (move,
eat, attack, flee, mate), a direction (north, south, east, or west), and speed value.
To acquire data for the training of the NeuralLearner a random agent was first
created to explore the artificial life world and record data to be used to train
the network. The actions of the random agent where filtered, and the training
set contained only the input-output pairs that either led to a direct increase in
energy, or kept the agent alive over a long period of time. Unfortunately, the
random agent usually (about 80% of the time) made a decision that did not lead
to useful data. Hence, the random agent approach was a very inefficient method
of acquiring data. To improve data acquisition, the random agent was pushed
towards situations where it would have experiences, both good and bad.

The resulting data sets were used to perform offline training on the neural
network of the agent. The network was then used statically with the agent, that
is, no more learning took place.

3.10 SPFAgent: Social Potential Fields

Social potential fields [14] are a way to control autonomous agents using inverse-
power laws on attractive and repulsive forces between the agents and objects of
the environment. We have implemented an agent whose movement is determined
by a set of forces which attract or repulse the agent to agents and object of its
sensor field. The resulting force is

Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency 105

Fi =
N∑

j=1

vij ·
(
− c1

rσ1
+

c2

rσ2

)
(10)

where vij is the unit vector of the direction from agent i to agent j, and r is the
distance from agent i to agent j. The parameters c1, c2 ≥ 0 and σ1, σ2 > 0 are
determining the nature of the forces between the agent and the object.

Once we decided on the general form of the forces, the next step is the choice
of the parameters c1, c2, σ1 and σ2 such that the desired behavior of the agent is
obtained. In practice, the determination of these parameters is a result of expe-
rience and experimentation. We have determined four sets of these parameters,
which describe the relationship of a social potential field agent to (1) another
social potential field agent, (2) an other agent, (3) food items and (4) obstacles.
The experimentally obtained values are displayed in Table 2.

Table 2. The inverse power force law constants used in SPFAgent

Object of Interest c1 c2 σ1 σ2

SPF Agent (a) 45.0 20.0 1.0 0.7
Other Agent (n) 45.0 0.0 1.0 0.7
Food (f) 0.0 20.0 1.0 0.8
Obstacle (o) 5.0 0.0 5.0 1.0

During testing, two major problems were found with the movements of the
agents. Agents had a tendency to be stuck to into local minima, such as becom-
ing immobile in the geometrical center of several food sources. Second, agents
frequently overshot the food location and performed an oscillatory movement
around it. A similar problem led to the agent bouncing indefinitely between two
obstacles. These problems were solved by adding heuristics which (a) break the
tie between the attraction forces and (b) prevent repetitive movements.

As the SPF paradigm describes only the movement of an agent, we applied a
set of simple heuristics for the remaining actions. The attack heuristics dictates
that the agent attacks any agent which gets closer than half of the critical dis-
tance 10. The mating heuristics encourages the mating of isolated SPF agents,
but restricts the mating of SPF agents inside groups. As an emergent property,
this heuristics leads to moderate size, relatively stable groups of SPF agents.

3.11 CxBRAgent: Context Based Reasoning

Context-based Reasoning (CxBR) is a paradigm intended to model human tac-
tical behaviors [5]. Contexts encapsulate knowledge about appropriate actions
needed to address specific situations. The CxBR paradigm is composed of a
tactical agent, mission context, major contexts, sub-contexts and sentinel rules
which control the transitions between contexts.

CxBRAgent was implemented using eight different context constructs: 1) The
ExploreContext is the default context of the mission. 2) The BackTrackContext

106 L.J. Luotsinen et al.

is called from ExploreContext when there is nothing new to explore in the map at
the current location of the agent. The agent will then retrace its step and search
for new places to explore. 3) The AttackContext is deployed when there is a
hostile entity within the sensor range. 4) The AvoidContext represents the case
when there is a hostile entity within the sensor range and the agent cannot attack
the other agent. The agent will move away from the hostile agent, trying to avoid
being chased or attacked by the other agent. 5) The EatContext is called from
either the ExploreContext or BackTrackContext when there is food within the
sensor range. The agent will move towards the food and invoke the eat command
on the food resource. 6) The FleeContext is invoked when the agent have been
attacked. The agent attempts to flee away from an attacker. 7) The MateContext
is invoked rules when the agent can mate. 8) The NearDeathContext is invoked
when the energy level of the agent is below a certain threshold. It will attempt
to extend its lifeline by spawning another agent.

The CxBR agent implements a simple path-planning algorithm which allows
it to navigate an internal representation of the global FFM map. The same
path-planner is used when approaching objects in the agent’s local sensor range.

3.12 KillerAgent: Simple Heuristics

The KillerAgent is implemented using a set of simple heuristics. The agent
keeps track of direction, failed moves and successful moves. If the number of
consecutive failed moves exceed a predefined threshold then a direction switch is
performed. The same simple idea is used if too many moves have been successful.
However, the threshold is higher in this case. When the agent detects food in
its sensor it will immediately navigate to it and eat the food. If the agent senses
other agents within its sensor range it will prioritize an attack over any other
action. If the agent itself is attacked it will flee. This agent does not utilize the
multiply feature or any teamwork strategies.

4 Implementation Effort

An important consideration in the choice of an agent paradigm is the effort
and complexity of the implementation. Everything else being equal, a simpler
implementation is frequently preferred, as it leads to a more maintainable code,
with usually smaller number of defects.

The software engineering metrics for each implementation are shown in
Table 3. The total lines of code (LOC) in conjunction with total lines of code
inside all method bodies (MLOC) are an indicator of the development effort for
each paradigm. In addition, we use cyclomatic complexity [12], to measure the
complexity of the conditional flow within each implementation. We show values
for the maximum cyclomatic complexity (MCC) found in a single method as well
as the sum of cyclomatic complexity (SCC) over the complete implementation of
the agent. All these measurements were applied strictly to the specific agent code
and did not include the services provided by the environment neither external
libraries. The only paradigm using an external library was NeuralLearner.

Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency 107

Table 3 shows that the NeuralLearner required more developer effort than any
other paradigm. Also, the NeuralLearner was implemented using an external
neural network library not included in the software metric calculations. The
behavioral models such as social potential fields and crowd modeling have a
relatively low count of lines, while agents with explicit programming models,
such as CBR, CxBR or RuleBasedAgent have a relatively large number of code.
As expected, KillerAgent is the most trivial agent, implemented with only 96
lines of code where 75 lines of code reside in method bodies.

Table 3. Canonical software metrics for each paradigm. LOC = Lines of code, MLOC
= Method lines of code, MCC = Max cyclomatic complexity, SCC = Sum of cyclomatic
complexity. Paradigms marked with (*) have external libraries that are not included
in the metric calculations.

Name LOC MLOC MCC SCC SCC/MLOC
AffectiveAgent 223 117 31 48 0.41

GenProgAgent 647 477 25 143 0.30

Reinforcer 313 236 13 52 0.22

CBRAgent 1357 1060 31 320 0.30

RuleBasedAgent 706 536 18 176 0.33

NäıveAgent 327 289 81 118 0.40

GamerAgent 1259 944 24 343 0.36

CrowdAgent 425 345 13 87 0.25

NeuralLearner* 1454 1119 36 297 0.27

SPFAgent 229 179 48 55 0.30

CxBRAgent 1135 689 21 298 0.43

KillerAgent 92 75 17 20 0.27

We use the SCC to MLOC ratio for comparison of cyclomatic complexity
between the paradigms. AffectiveAgent, NaiveAgent and CxBRAgent all have
ratios greater than 0.4. This means that for every line of code (inside method
bodies) there is on average 0.4 conditional flow statements. These values indicate
high complexity in learning and decision making within the paradigms. In con-
trast, Reinforcer, CrowdAgent and KillerAgent have low SCC to MLOC rations
ranging from 0.22 to 0.27.

5 Findings

5.1 Development Process

The process of developing the twelve agents for this comparative study was
organized in two stages. In the first, closed phase, the developers were working
on the agents in isolation. Only a very simple random agent and the initial ver-
sion of the KillerAgent was provided as an illustration of the API. The testing in

108 L.J. Luotsinen et al.

this phase was performed mostly in non-competitive settings. Some developers
have tested their agents in competitive scenarios, by running their agents under
different type strings. In some learning based paradigms the developers created
“bootstrap” agents as training partners or ways to collect training information.

In the second, open phase of the development process, regular competitive
runs were organized, which allowed the developers to observe the behavior of
their own and of competing agents. However, the developers could not use oppo-
nent agents in scripted training scenarios. The developers had the opportunity
to further develop or fine tune their agents to improve their performance in these
competitive runs. We encouraged the developers to share their heuristics with
each other, and emphasized that the goal is not to obtain the agent with the
highest performance, but to best express the “spirit” of the paradigm. Neverthe-
less, a certain level of competitive pressure did develop between the developers.

By allowing encounters between the agents during the development process,
we tried to guarantee that the agent can not win the game by a “surprise tactic”
which might have been overlooked by the other developers. An example of this
occurred when one of the developers discovered a hole in the game API, through
which the agent could change the type string during the game and thus prevent
attacks by masquerading as a friendly agent. This security hole was patched.

The comparison study allowed us to observe the different processes through
which the developers analyzed the problem, approached the implementation,
debugged or refined the agents, and reacted to the initial performance results.
We found that the choice of the paradigm was critical in determining the flow
of the development process. Although the developers were encouraged to use
disciplined software engineering approaches, these turned out to be feasible only
in the paradigms which involved explicit programming.

For paradigms where the behavior of the agent was determined by learning
or encoded in variables such as force fields or affective or grouping parameters,
software engineering techniques could only be applied to the development of the
framework of the implementation. The main problem was that the results of
a certain chunk of development effort was difficult to predict. Re-starting the
learning process with a new set of parameters had frequently led to an agent
with a lower performance. Adjusting the parameters of the force field to achieve
a new behavior frequently invalidated previously achieved behaviors. All this
made it difficult to apply quality assurance techniques.

5.2 The Limits of Learning

All paradigms which relied on learning (Neural Networks, Genetic Programming
and Reinforcement Learning) have been successful in creating agents which can
survive in the environment in the absence of predators. For all paradigms the
developers spent significant time designing learning scenarios in which the al-
gorithms can be steered in the right direction. This was made difficult by the
fact that these scenarios had to be populated with agents. The most problematic
paradigm from this point of view turned out to be the neural network agent,
whose supervised learning algorithm required an existing agent to perform the

Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency 109

scenario to generate “correct” input and output pairs. Admittedly, this difficulty
would be irrelevant in applications where such an imitation target exists and can
be used at will.

All agents were successful in learning policies and inclinations (such as the
ideal value of aggression), and they performed better than human intuition for
these parameters. However, the learning agents were unsuccessful in learning
(essentially, discovering) algorithms. The farthest they got was discovering ap-
proaches for collision avoidance, speed control for approaching the food, or avoid-
ing to get stuck. However, we were not successful in developing path planning
algorithms (such as an approach for visiting food locations). The genetic pro-
gramming approach was the only learning model which would represent (and,
theoretically evolve) such a model. However, an examination of the evolved ge-
netic programs showed that they were very far from evolving anything like a
path planning algorithm. This inevitably put them at a disadvantage against
explicitly programmed agents which can deploy advanced algorithms such as
A*, path planning, approximate Hamiltonian cycles and incrementally built
internal maps.

5.3 A Rose by Another Name

Many paradigms led to surprisingly similar implementations, while giving very
different interpretations to the variables involved. For instance, the developers of
affective models AffectiveAgent and CrowdAgent used the variables describing
the emotional states as just another state variable and applying regular program-
ming techniques on them, on hindsight labeling them with emotional significance
(the write-up for affective agents contained terms such as “emotional quagmire”
for being stuck in a local minima). On the other hand, developers of other agents
tended to assign anthropomorphic significance to their state variables (“the agent
gets angry”), even if their paradigm did not require it. A similar phenomena was
observed related to contexts. Context based reasoning, as implemented in the
CxBRAgent requires the developer to actively identify the context of the agents
operation and describes ways to handle it. However, the concept of context was
actively used in at least four other agents. The SPFAgent and the CrowdAgent
ended up deploying very similar attraction and repulsion forces, starting from
different physical models and very different high level interpretations.

5.4 The Importance of the Heuristics

Although the game was not easy (humans playing it at first time did not perform
better than agents), human users could easily come up with rules of thumb which
offered significant performance increase. The ease of representing these
heuristics in the agents was a determining factor in the performance.
Agents in which this could be done only in a very convoluted way (such as
the learning agents, and, in lesser degree, the potential field, crowd and affec-
tive models), had scored the worst in direct comparisons, and led to significant
frustration.

110 L.J. Luotsinen et al.

5.5 “Paradigm-Pure Models Considered Harmful” or “Let Us Now
Praise the Paradigm”?

Finally, let us consider a very general question: are paradigms useful at all in
agent development?

To answer this, we need to first clarify the difference between an agent devel-
opment paradigm and an algorithm. A paradigm is a guiding principle around
which the agent development is organized. Some of the paradigms compared
in this paper are also general purpose algorithms, which can be used in limited
parts of the agent, without requiring an overall commitment from the developers.

The question is whether there is any advantage of organizing the development
of an agent around a paradigm. This study required paradigm-pure implemen-
tations from the developers, that is, the developers were not allowed to borrow
elements from other paradigms. In general, academic research projects would
more likely be insisting on paradigm purity, as opposed to product development
projects in the industry. This is partially justified by the different deliverables of
an academic research group vs. a development team in the software or hardware
industry. If our object is the study of a certain paradigm, paradigm purity is a
natural choice. But what about the case when the objective is to optimize some
type of performance measure?

In our study, the developers’ subjective opinion was strongly against the
paradigm purity requirement. Many developers felt a significant peer pressure to
add additional heuristics, at the expense of the paradigm, to correct perceived
performance and behavior problems.

Certainly, some paradigms made it exceedingly difficult to transfer human
knowledge and rules of thumb to the agents, leading to performance prob-
lems. But, the other side of the coin is that an unchecked freeform develop-
ment leads to a random collection of heuristics whose interactions are poorly
understood. A good example is the NäıveAgent whose heuristics provided good
performance in competitive scenarios, but which starved itself of resources by
exponential multiplication when it was alone on the map. Of course, this could
have been corrected with another heuristic, but it still leaves the basic problem
unsolved.

In general our study supports the choice of a paradigm which can provide a
coherent narrative to the development process, but it is not so restrictive that it
would hinder the transfer of human knowledge to the agent. In particular, the
ability to incorporate pre-existing algorithms is critical to the development of
high performance agents.

6 Conclusions

In this paper we report on the findings of a study in which twelve paradigms
of agency were compared in an environment inspired from strategy games
and artificial life. A more extensive report on the study, together with source
code and playable simulation runs is available from the website http://
netmoc.cpe.ucf.edu/Yaes/index.html.

Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency 111

The research reported in this paper was partially supported by a fellow-
ship from the Interdisciplinary Information Science and Technology Laboratory
(I2Lab) at the University of Central Florida.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodolog-
ical variations, and system approaches. AI Commun., 7(1):39–59, 1994.

2. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic programming -
an introduction: On the automatic evolution of computer programs and its appli-
cations. In Morgan Kauffman Publishers Inc., 1998.

3. L. Bölöni and D. Turgut. YAES - a modular simulator for mobile networks. In
8-th ACM/IEEE International Symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems MSWIM 2005, 2005.

4. E. Bouvier, E. Cohen, and L. Najman. From crowd simulation to airbag deploy-
ment: Particle systems, a new paradigm of simulation. J. Electronic Imaging,
6(1):94–107, 1997.

5. A. J. Gonzalez and R. H. Ahlers. Context-based representation of intelligent be-
havior in simulated opponents. In Proceedings of the Computer Generated Forces
and Behavior Representation Conference, 1996.

6. S. Hanks, M. E. Pollack, and P. R. Cohen. Benchmarks, testbeds, controlled ex-
perimentation, and the design of agent architectures. AI Magazine, 14(4):17–42,
1993.

7. Hodjat and Shahrzad. Introducing a dynamic problem solving scheme based on a
learning algorithm in artificial life environemtns. In IEEE International Conference
on Neural Networks. IEEE World Congress on Computational Intelligence., pages
2333–2338, 1994.

8. J. H. Holland. Adaptation in natural and artificial systems. In University of
Michigan Press, Ann Arbor, 1975.

9. J.V.Neumann and O.Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

10. J. R. Koza. Genetically breeding populations of computer programs to solve prob-
lems in artificial intelligence. In Proceedings of the Second International Conference
on Tools for AI, Herndon, Virginia, USA, pages 819–827. IEEE Computer Society
Press, Los Alamitos, CA, USA, 6-9 Nov. 1990.

11. M. Likhachev, M. Kaess, Z. Kira, and R. C. Arkin. Spatio-temporal case-based
reasoning for efficient reactive robot navigation. 2005.

12. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2:308–320, 1976.

13. T. M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.
14. J. Reif and H. Wang. Social potential fields: A distributed behavioral control for

autonomous robots. In Proceedings of the International Workshop on Algorithmic
Foundations of Robotics (WAFR), pages 431–459, 1995.

15. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In Parallel distributed processing: explorations in
the microstructure of cognition, vol. 1: foundations, pages 318–362. MIT Press,
Cambridge, MA, USA, 1986.

112 L.J. Luotsinen et al.

16. R. C. Schank. Dynamic Memory: A Theory of Reminding and Learning in Com-
puters and People. Cambridge University Press, New York, NY, USA, 1983.

17. M. Scheutz. Useful roles of emotions in artificial agents: A case study from artificial
life. In D. L. McGuinness and G. Ferguson, editors, AAAI, pages 42–48. AAAI
Press / The MIT Press, 2004.

18. L. Yaeger. Computational genetics, physiology, metabolism, neural systems, learn-
ing, vision and behavior or PolyWorld: Life in a new context. In C. G. Langton, ed-
itor, Artificial Life III, Proceedings Volume XVII, pages 263–298. Addison-Wesley,
1994.

19. G. N. Yannakakis, J. Levine, J. Hallam, and M. Papageorgiou. Performance, ro-
bustness and effort cost comparison of machine learning mechanisms in FlatLand.
IEEE Proceedings of the 11th Mediterranean Conference on Control and Automa-
tion, June 2003.

Augmenting BDI Agents with

Deliberative Planning Techniques

Andrzej Walczak, Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

Distributed Systems and Information Systems
Department of Informatics, University of Hamburg

D-22527 Hamburg, Germany

Abstract. Belief-Desire-Intention (BDI) agents are well suited for au-
tonomous applications in dynamic environments. Their precompiled plan
schemata contain the procedural knowledge of an agent and contribute to
the performance. The agents generally are constrained to a fixed set of ac-
tion patterns. Their choice depends on current goals, not on the future of
the environment. Planning techniques can provide dynamic plans regard-
ing the predicted state of the environment. We augment a BDI frame-
work with a state-based planner for operational planning in domains
where BDI is not well applicable. For this purpose, the requirements for
the planner and for the coupling with a BDI system are investigated. An
approach is introduced where a BDI system takes responsibility for plan
monitoring and re-planning and the planner for the creation of plans. A
fast state-based planner utilizing domain specific control knowledge re-
tains the responsiveness of the system. In order to facilitate integration
with BDI systems programmed in object-oriented languages, the plan-
ning problem is adopted into the BDI conceptual space with object-based
domain models. The application of the hybrid system is illustrated using
a propositional puzzle and a multi agent coordination scenario.

1 Introduction

BDI is a well established model of agency [1] based on the Theory of Practical
Reasoning [2]. Early BDI-systems have been devised with the idea in mind to
overcome the poor performance of propositional planners controlling agents in
dynamic environments at that time. The systems are based on two central ideas.
One of them is the reactive planning, comparable with hierarchical planning
systems [3], the other is deliberation [4,5].

Planning, an approach central to Artificial Intelligence (AI) research, is sub-
stantial for rational agent behavior. It is a method that aids agents in solving
complex problems in synthetic and natural environments. Although planning
systems are devised for means-end reasoning and are capable to find actions
that achieve goals, they are less useful to decide, which goals to pursue [6].

Due to advances in planning techniques and understanding of planning prob-
lems, it seams reasonable and interesting to combine the strength of flexible
means-end reasoning given by deliberative planners with the timely reactivity

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 113–127, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

114 A. Walczak et al.

and goal deliberation capabilities carried by BDI systems. It is also interest-
ing to analyze suitability of planning approaches to BDI agents in real world
applications.

In order to benefit from both paradigms one needs to consider the strengths
of both paradigms. There are multiple ways to compose the systems and the
outcome is different dependent on their properties and features. As stated above,
hierarchical planning techniques are comparable with BDI. Their strength lies
in the evaluation of future environmental states and a constructed proof that a
course of action will achieve goals under the preconditions. On the other hand,
BDI systems handle dynamic environments more efficiently and are capable of
both: reactive behavior, and maintenance of long term goals. They sacrifice the
optimality and correctness of their planning algorithms for performance.

Both paradigms deal with generation of actions and share common ideas, so
there are concerns which parts of a control and planning problem will be dele-
gated to a planner and which to the BDI subsystem. This determines the choice
of the BDI component and the planning algorithm. The overall architecture
depends strongly on those choices.

A hybrid system can be built twofold. The planner may be applied to produce
long term plans and to hand over single parts to a reactive BDI subsystem for
the execution. This approach invokes serious performance concerns especially in
dynamic environments where continuous changes force the planner to re-plan -
a process with performance penalties comparable to planning itself. Generally,
planning algorithms have been devised for one shot planning and are well suited
for a solution of a single planning problem. They are rather less useful to maintain
long term intentions of an agent.

The other way round is to augment the BDI system with a relatively simple
planner that is invoked from the BDI controller and used for the purpose of
creating short-term plans that need a proof of correctness. The last approach is
used in this work to join the best from both paradigms.

The remainder of this paper proceeds as follows. In Section 2 we define the
concept of a planning problem used for this work. Section 3 discusses the choice
of a planning algorithm. In Section 4 we propose a way to integrate a planning
component into a BDI framework. Section 5 presents two application examples
of the hybrid system. Related work is presented in Section 6 and a conclusion is
given in Section 7.

2 Planning Concepts

The basis for planning is given in the form of a planning problem. In order to
represent a planning problem one needs at least to describe states of the world
and how these states may change due to agent’s actions. In a restricted classical
view, this can be given by a model of a state-transition system Σ = (S, A, γ)
where S is the set of states, A is the set of actions and γ : S × A → S ∪ {⊥}
is the transition function mapping a state and action to another state. ⊥ is the
illegal state being a result of a not applicable action. The planning problem is

Augmenting BDI Agents with Deliberative Planning Techniques 115

given by a triple P = (Σ, s0, g) where s0 ∈ S is the initial state and g is the
description of a goal state inducing the set Sg := {s ∈ S | s satisfies g} [7].

The following definition of a planning problem has been found useful for the
purpose of this work. It deviates from a standard definition by introducing utility
functions interpreted as agent desires D. The other difference is an object-based
representation of states build upon the sets O, A and V . The initial state s0
has been understood as the current state sc to reflect the fact that the planning
takes place at runtime.

Definition 1. A state is a tuple s =< G, σ, sp, as > where:

– G is a stack of agent goals in that state and each goal is a difference function
g∈G : S → R revealing an approximate distance from the state to the goal in
a common weighted measure.

– σ : O × A → V ∪ O is a partial function assigning values to the attributes
of objects. O, A and V are taken from the model of a planning problem
described below.

– sp is the parent state of this one.
– as is the action applied to sp state yielding s.

The planner reasons about states of the environment and the agent’s mental
states. The environment is represented by object-based models given by an as-
signment function σ over a set of objects O and attributes A given below. For
short-term planning only the immediate goals are interesting for the planner.
A stack of goals G allows for ordered hierarchical decomposition. It is assumed
that goals at this level of planning have been filtered through the deliberative
BDI process and are consistent with each other.

Definition 2. A planning problem is a tuple P =< A, sc, D, O, A, V > where:

– A is a set of all actions available to the agent.
– sc is the current state of the environment.
– D contains agent desires, in respect to possible solutions, assumed not to

change within the short scope of operational planning.
– O contains the objects from the planning domain with attributes from the set

A taking values from the set V .

Desires are inverse utility functions d∈D : S → R on the states and reflect
(not necessarily coherent) mental attitudes of the agent. Both desires and goals
influence actions chosen by the agent, but only goals represent concrete points
in the future state space, that the agent has to achieve. They also have direct
impact on the choice of future goals.

Each action a ∈ A is a tuple a =< pa, γa, ωa > with pa being a predicate
over a state telling if the action is applicable. γa and ωa are transition functions
over the set of goals and attribute assignment functions respectively. If action
a is applicable to s, the application transforms it to a new child state s′ =<
γa(G), ωa(σ), s, a >. This yields a new set of goals G′ = γa(G) and new attribute
assignment function σ′ = ωa(σ).

116 A. Walczak et al.

3 Planning Algorithm

Planning has been assumed to be a higher cognitive activity than reacting and
controlling behavior and has been granted more computational resources. We in-
troduce a planner at a level below BDI control and deliberative behaviors. Given
such an architectural design, the choice of a planning algorithm is restricted to
a particular subset. With an advanced BDI system, one is equipped with rea-
soning and a strong conceptual framework, so there is no need to duplicate the
functionality of both. To guide our choice of planning algorithms, the latest
results from planning competitions [8] have been used. Planners entering such
competitions have been tested on many standardized planning examples. Better
performance indicates the right choice of an algorithm. Changing demands of
successive planning competitions favored approaches that are easily expandable
to new planning concepts.

In order for the system to remain responsive to circumstances that induced the
planning task, the planner needs to operate under tight timing constraints. This
fact emphasizes performance, not the generality or cognitive adequacy of a plan-
ning algorithm. State-based planners augmented with domain specific knowledge
have been shown superior to partial-order planners, in that respect [8]. They are
also easily applicable to many planning domains including propositional, nu-
meric, timed, continuous and contingent domains.

The following planning algorithm is a state-based search algorithm working
on an agenda of states. The main loop examines states from the agenda and
expands them searching through the state space for one that achieves some or
all of the goals. It terminates, when the agenda gets empty or when the time
limit intended for planning is exceeded (cf. line 4). Please recall that states are
tuples of the form < G, σ, sp, as >. Each state has an assigned inverse utility
estimate through the function e : S → R.

Plan(A, sc, D, T)
1 best ← sc

2 e(best) ← ∞
3 agenda ← {sc}
4 while |agenda| > 0 and tc < T
5 do s ← removebest(agenda)
6 if e(s) < e(best) and |Gs| <= |Gbest|
7 then best ← s
8 Options ← generateOptions(s, A)
9 for each {a =< pa, γa, ωa > | a ∈ Options}

10 do G′ ← γa(G)
11 s′ ←< G′, ωa(σ), s, a >
12 removeSatisfiedGoals(s′)
13 e(s′) ← inverseUtility(s′, D) + goalsDistance(s′, G′)
14 insert(s′, agenda)
15 return best

Augmenting BDI Agents with Deliberative Planning Techniques 117

For many real world problems it is impossible for an agent to enumerate all action
instances. Even in discrete domains, the number of possible actions becomes
prohibitive. In a concrete design one would delegate the task of generating a set
of applicable actions to a separate option generator component. Based on a set
of action schemata and the actual situation it generates all applicable actions
(cf. line 8). Lines 10 and 11 apply the transition function. In line 12 all satisfied
goals are removed from the top of the goal stack of the new state. In order to
sort states by their utility, a new estimate is calculated in line 13 before the
state is inserted into the agenda. The variable implementation of pop and insert
methods allows for different state exploration strategies.

There are two basic types of actions. Concrete actions modify object models in
a state by changing the σ assignment function. In this case, the goal manipulation
function is an identity function γa = id. The other type of actions are abstract
ones called decomposition methods that remove a goal from the top of the goal
stack G and replace it by a list of totally ordered subgoals. Such an action has
generally no effect on the models of the environment.

The domain specific knowledge used to guide the planner is hidden in the
action applicability predicates pa, in the goal distance functions g ∈ G, and in
the inverse utility functions d ∈ D (cf. sec. 5). Including a reference to a parent
in a state allows for complex temporal conditions over the course of actions,
like safety and liveness ones [9]. The estimate is computed using the heuristic
function below:

e(s) =
∑

d∈D

d(s) +
∑

g∈G

g(s)

This choice of this heuristic embodies the judgments that optimal solutions are
anyway computationally expensive.

On success, the planning algorithm returns a state where every immediate goal
posed to the planner is satisfied. When the algorithm fails to find a complete
plan, the best plan in respect to the estimate and the number of unachieved
goals is returned.

The emphasis has been put on the performance and use of domain specific
knowledge. The difference to other linear planning algorithms based on the state-
space search is the explicit representation of agent intentional structure manip-
ulated during the process of planning. E.g. the Strips planner reasoned with a
goal stack, this planner reasons about a goal stack in each planning step. This
makes the planner similar to a state-based HTN planner with ordered decom-
position. The understanding of agent’s desires as heuristic and utility functions
used to guide the planning process is also specific to this work.

4 Integration with a BDI Framework

A generic BDI agent architecture (based on [10,4]) is illustrated in Figure 1.
One of the central components is the goal hierarchy housing higher level goals
including desires and important events. The goals may depend on each other in

118 A. Walczak et al.

Reaction

Plan

Goals

Percepts Actions

Library

Deliberation

Intentions
Reasoner\
BDI

Planning
ProcessHeuristic

Actions\

Fig. 1. Generic BDI architecture with a
planner. Planning is an activity of the
agent (filled circle) and produces new in-
tentions.

S G t

BDI

State−based planner

plan schema

plan schema

decomposition method

Fig. 2. Schematic illustration of a plan in
the hybrid system

a forest like structure. This component includes the upper part of the intentional
structure of an agent and provides it with motivation and reason for action.

Goals are used by the BDI reasoner to chose among plan schemata and to cre-
ate the intentional structure. In object-oriented BDI frameworks plan schemata
stored in a plan library are defined by classes of plans. The intentional structure
is given by current plan instances. Another common component of the architec-
ture is a reactive subsystem. Triggered by belief changes or a percept, it generates
new goals for the reasoner. At the meta-level a goal deliberation process may
influence the reasoning and execution. The goal deliberation component analyses
dependencies among goals and modifies the intentional structure accordingly to
agent’s preferences.

4.1 Preparing a Planning Problem Instance

For a specific goal the BDI reasoner may use the planner to create a dynamic
plan. This is done, whenever all existing plan schemata have failed or there is
an explicit preference for the planner specified in the agent description file(cf.
sec. 5). First an instance of a planning problem must be created. This requires
mapping of agent goals and beliefs to the specific planner representation. All
planner goals represent a distance measure defined over states with object-based
models described above. There is no BDI system, known to the authors, that
define goals as a distance measure with respect to different attribute types and
dimensions. The domain designer performs the mapping. This manual approach
utilizes the knowledge of the designer, who may provide adequate weights for
attribute dimensions and distance functions for goals that cannot be represented
in the object-attribute-value form.

In the planning process, the states are stored in a tree like database, that
may consist of a large number of states, each storing a subset of beliefs. For
planning being efficient in space and time only the relevant beliefs need to be

Augmenting BDI Agents with Deliberative Planning Techniques 119

stored in a state. The choice of action schemata determines, which beliefs will
be changed, and which will remain unaffected by the process. Object instances
must be decomposed into their attributes in order to avoid copying solid objects
including not relevant attributes. In the prototype, this process is performed
manually, due to the complexity.

For example, in the loader dock scenario (cf. sec. 5) the position of a worker
and the packet being held by the worker change. They are affected by agent
actions and must be reflected in the state representation. On the other hand,
a domain time model stores movements of other workers and their different
positions with respect to time. The model is not affected by any actions and may
be accessed directly form the agent’s belief-base. In the blocks’ world example,
the relative position of a block is relevant for the planning process, but its color
remains unregarded.

The actions work directly on the state representation. The central point of an
action is the application method, including the applicability predicate and tran-
sition functions for the stack of goals and object descriptions (cf. sec. 5). This
method summerizes all domain knowledge needed for planning with respect to
the action. A wide range of conditions and types of search control knowledge
may be specified this way. They are represented in the programming language
of choice. The same is true in respect to the effects of an action. It is possible
to derive this knowledge from already existing plan schemata of BDI systems,
but for concrete examples studied, it showed not to be sufficient to aid the
planner in an effective way. The actions are implemented in our approach by
the application designer. Heuristics reflect the desires of an agent regarding cre-
ated plans. They must be devised and implemented for the particular planning
domain.

4.2 Planning and Execution

Prepared problem instances are handed to the planner and executed in a plan-
ning process like other agent’s plans. The planner delivers created plans directly
into the intentional structure and does not store them in a plan library. If plans
generated by the planner were general enough in their nature, the designer of
agent’s knowledge could also precompile such plans in advance. Because plans
are created at low-level, their parameters are tightly bound and they are appli-
cable only to a particular situation. Storing such plans in the plan library would
clutter it with instances used only once.

The resulting intentional structure may be seen in Figure 2. The upper frag-
ment contains a partially expanded branch of the BDI goal structure. One of
the goals has been assigned to the planner. It starts in the current state S and
uses a decomposition method to place intermediate points in the search space as
subgoals on the goal stack. The subgoals are removed from left to right as they
are achieved. The created plan is placed in the intentional structure for execu-
tion and has a BDI goal as the parent node. The lower sequence represents the
envisioned sequence of states, which should be attained at the execution time
successively.

120 A. Walczak et al.

In a dynamic environment, conditions change in an unexpected way. Monitor-
ing is an activity testing for the correct execution of a plan extending into the
future. This activity is controlled by the BDI system. In order to prove that the
remainder of a plan is correct it needs to be checked against the current situa-
tion. A component similar to the planner is used to evaluate the remainder in a
simulated environment given by the planning domain. The simulator is a greedy
planner with the option generator replaced by an iterator over the plan’s tail.

If the simulation or the execution of a plan step reports an error, the plan
is abandoned like a BDI plan instance. The goal responsible for invoking the
planner is still located in the intentional structure of the BDI agent. The BDI
reasoner may mark the goal with failure and abandon it or if the goal was
marked to retry plans, the planner will be asked again for a new plan. In this
respect, the planning process may be seen as a single agent plan schema or as
a presumably infinite set of plan instances. The choice is taken at the design
time and marked using BDI properties on agent goals specified in the agent
description. For example, in the loader dock the PickupPacket goal is excluded
on a plan failure (cf. sec. 5).

4.3 Managing Plan Failures

BDI execution engines have been devised under the assumption that the number
of plans for a goal is limited to a small number. Given the capability of a planner
to create an infinite number of plan instances, the BDI reasoning engine would
repeatedly instruct the planner to create plans even if there are no plans that
would achieve the goal. On the other hand, as the situation changes the planner
may find a plan in the future. There are four cases that need a decision on the
part of a BDI reasoner:

I. The planner cannot find any way to improve the agent’s situation. In this
case, it returns an empty plan with no actions. The BDI reasoner may wait
a specific time and retry finding a plan. The BDI goal is marked with a BDI
flag carrying the delay time between failed and new planning process.

II. The planner could not find a correct plan satisfying all goals and subgoals.
Following this plan would allow the agent to reach a state where the goals
are satisfied, but it could also lead it into a dead-end if the plan contains
irreversible decisions. On the other hand, the plan may be executed with
the hope that future planning, starting in a better situation, will find a
complete plan. The description of planning problem given to the planner,
should include a flag specifying if incomplete plans are allowed as a result.

III. The planner could not find a complete plan, because all of the time des-
ignated for planning has been used up. The time limit is specified in the
description of the planning problem given to the planner. If a plan cannot
be found because the problem exceed the planning horizon of an agent, an
incomplete plan will be returned that fits specified problem best. This case
can be handled the same way like case II.

Augmenting BDI Agents with Deliberative Planning Techniques 121

IV. A number of correct plan instances is returned in successive trials but they
fail to reach the goal. In this case the domain description is too abstract
and lacks the knowledge needed by the planner to recognize specific reasons
for failure. For example, the speed of a robot depends on the load carried,
but domain designer specified constant speed. Such failures are seldom, but
must be accounted for in this design. When plans fail because of a more
demanding setting than the one stated in the domain description, a counter
on the goal for failed plans may be the most simple solution.

BDI systems with elaborate goal representation including failure and retrial
semantics [11], already offer the provisions to handle the cases at goal and plan
levels. The description of goals and the semantics of the reasoner may be ex-
tended to provide BDI flags described above. When goals are merely events
processed by the system this task can be delegated to an additional controller
component wrapping around the planner.

5 Examples

The planner presented in this paper has been implemented in the Java
tm lan-

guage [12]. To evaluate it with a BDI framework it was integrated with Jadex

[13] – a BDI reasoning framework developed at the University of Hamburg.
Jadex incorporates many ideas from BDI-systems, like PRS [10] or Jack

tm [14]
and provides new unique facilities to deal with goal deliberation.

Two domains have been designed and implemented to demonstrate the dy-
namics and reasoning capabilities of the hybrid system. In the standard blocks-
world example a simple but though propositional domain is used for testing.
The Loader Dock example contains a continuous and highly dynamic domain
demanding real-time performance.

5.1 Blocks’ World

The blocks-world domain is a standard testing domain for planners. The problem
consists of a bunch of blocks that must be moved into a final configuration. It
is one of the first problems investigated with planners and from the beginning
it has been a challenge as the problem is clearly exponential with respect to the
number of blocks used.

The control knowledge is borrowed from the TALPlanner [9] and adapted
to Java

tm. The desire of an agent is to keep the number of moved blocks low.
The distance to a goal is the number of blocks in bad towers (i.e. towers of blocks
not conforming with the target state).

Figure 3 shows an implementation of the control knowledge in Java
tm. Here

all the applicability predicate and transition functions are arranged together in
a single method. This way, the code is kept in one place and much of redundant
computation is abandoned.

For example, the control knowledge of PutToTable demonstrates the use of a
temporal condition. Whenever in the foregoing plan a block was placed already

122 A. Walczak et al.

public boolean applyTo(State state) {
Block block=(Block)state.get(LOAD);
if (block==null) return false;

State previous=state.getPrevious();
while(previous!=null) {

if (previous.get(DOWN, block)==null) return false;
previous = previous.getPrevious();

}
state.set(DOWN, block, null);
state.set(LOAD, null);
return true;

}

Fig. 3. Control knowledge for the PutToTable operator. A temporal condition assures
that a block is put to the table only once.

on the table, the action is no more applicable to the state considered. This
assertion prevents blocks from being placed on table again and again.

Using global search with an agenda of 10, it requires about 10 seconds on an
i586 400MHz machine to stack 100 blocks. These results are not surprising as
the planner has been build upon reliable and approved planning techniques. It
compares well with the state of art planners (cf. [8]).

5.2 Loader Dock

In the loader dock several workers wander around or carry packets between
incoming trucks and the shelves. Their job is to unload packets from a full
truck, or to deliver packets to an empty one, whenever trucks arrive at the store.
The dock itself contains shelves where packets can be placed temporally. The
shelves are separated by corridor ways, which are used by workers to transport
the packets (cf. fig. 4).

This particular domain is fully observable in respect to a certain update in-
terval. This update of mutual beliefs that is performed by the store agent. It
is almost deterministic because agents cannot be sure if created plans will be
executed in time as they predicted. The environment changes because of other
agents and processes. This includes trucks coming in and going out at various
time intervals. Most quantities, like the number of packets, trucks, workers and
places, are finite, but attributes of domain objects like speed, direction, arrival
and departure time are real valued. There are many processes and agents acting
in this domain concurrently. Agents do have common goals to handle the job at
the storehouse, but share resources like time and corridor space. The storehouse
depicted in Figure 4 is modeled using a discrete grid of points connected with
each other through pathways. Workers and packets can take any position in the
store and may head towards any real valued direction.

Planning takes very little time for this small domain. The approximate time
of path planning on an i686 3GHz machine is from 1ms to 10ms. Because way

Augmenting BDI Agents with Deliberative Planning Techniques 123

Fig. 4. The graphical interface of the loader dock example

points in the grid are static, all movement actions are precomputed in advance,
which speeds the planning process.

When a worker makes an intention to move somewhere, it communicates
this intention to other ones for the purpose of coordination. A trajectory of the
movement, described by points and exact time-values, is sent to each worker, so it
can update its beliefs about future changes in the environment. This information
is stored in a domain time model representing the beliefs concerning prospective
workers’ positions. This information guides the planning process of each worker,
so none of them intersects a path of another.

Goals to load or unload truck packets are distributed using the FIPA Contract
Net Interaction Protocol [15]. Such a goal contains packet identification and a
deadline. The worker responding with the fastest plan schema wins and com-
mits to the execution. Other workers are informed about this intention. Figure 5
demonstrates a pickup goal. It represents a condition, where the agent is carrying
a packet. exclude="when failed" requests the BDI reasoner not to start the
planner again after the initially created plan fails. The deliberation section tells
the reasoner to suspend pursuing other goals with types: Go, PickupPacketC,
PutdownPacketC. It prevents an agent from trying to go in different directions
and to respond to calls for proposals, while processing this goal. The goal repre-
sents the BDI sphere of responsibility. It contains the provisions, as mentioned
earlier, for re-planning (specified with flags), deliberation and monitoring (using
the target condition).

A corresponding planning domain is specified in Figure 6. The planning pro-
cess takes place in an instance of PickupPlan triggered by a PickupPacket goal.
This part of the agent description file (ADF) specifies the responsibility of the

124 A. Walczak et al.

<achievegoal name="PickupPacket" exclude="when_failed">
<parameter name="packet" class="Packet"/>
<deliberation cardinality="1">

<inhibits ref="Go"/>
<inhibits ref="PickupPacketC"/>
<inhibits ref="PutdownPacketC"/>

</deliberation>
<targetcondition>$beliefbase.packet!=null</targetcondition>

</achievegoal>

Fig. 5. Specification of the PickupPacket goal

<plan name="pickup" search="global" agenda="200" time="2000">
<body>new PickupPlan()</body>
<trigger>

<goal ref="PickupPacket"/>
</trigger>
<heuristic>new TimeHeuristic()</heuristic>
<operator>new MoveOp($to)</operator>
<operator>new PickupOp()</operator>

</plan>

Fig. 6. Specification of the Pickup plan

planning component. Searching for the best plan to pickup a packet is done using
a global search strategy. In order to confine the planning horizon the planning
agenda is limited to 200 planning alternatives and the time given to the planner
is 2000 ms. By default the planner should return correct plans only. The heuristic
used expresses agent desire for plans taking less time to execute. The operator
MoveOp changes the position of a worker and the operator PickupOp picks up
the packet specified in the goal.

The use of a planner at the operational level helped worker agents to plan their
activities and coordinate among themselves by communicating their intentions.
They were successful to plan in a dynamic cooperative scenario with discrete and
continuous resources. The BDI part has been effectively applied to control the
dynamics of execution and has kept constraints over goals satisfied. The hybrid
system has remained reactive and was able to adapt to different load factors.

6 Related Research

Architectures with strong emphasis on artificial intelligence include a planning
component as their central part. An example system designed with BDI and
planning in mind is InterRRaP [16]. It includes a local planning layer utilizing
a hierarchical planner. The representation of procedures and goals follows that
of a hierarchical task network (HTN) planner and has a declarative form. In the
layered architecture, the planner takes control over a reactive subsystem.

Augmenting BDI Agents with Deliberative Planning Techniques 125

The topic of joining procedural BDI reasoning engines with decision theoretic
planners is not new. System have been built that proved especially useful in do-
mains featuring enough time for planning, like in the example of Propice-Plan

[17] featuring a blast furnace domain. Propice-Plan extends the dMars system
with a state based planner IPP. Cypress is a system composed of the hierar-
chical planner Sipe-2 upon the Procedural Reasoning System (PRS) [10] also
following a layered approach. Both systems are glued together with The ACT
Formalism [18].

In the work of De Silva [19] a hierarchical planner JSHOP [20], is used to
produce plans for the JacktmBDI system. Domain descriptions for the planner
are created from the BDI plan schemata at compile time. The approach limits
the programmer to a subset of possible programming solutions given by the
intersection of the planning language and the BDI language and their possible
transformations. It is also unclear, how to generalize this approach to a wider
class of BDI systems.

BDI representation of agent internal mental states states can be mapped to the
Strips [21] notation forth and back [22]. This has been done on an abstract BDI
interpreter called X-BDI [23] and augmented with GraphPlan. The mapping is
a structure transformation of beliefs, desires and intentions into a propositional
notation that is used by the planner so beliefs and actions are constrained by
the propositional Strips domain representation.

These approaches aimed at technical or theoretical feasibility. There was no
concern about generality or performance. In our opinion, they are not well ap-
plicable to planning of low-level control tasks. GraphPlan and IPP are generic
state-based planners using generic heuristics. The range of problems solved by
these planners is limited and they are overpowered by planners applying do-
main specific knowledge [8]. They require to state the planning problem declar-
atively as a set of propositions. Object-based domain modeling approaches fit
better with newer BDI frameworks designed in object-oriented languages such
as Jack

tm [14] or Jadex [13].
Sipe-2 and InterRRaP planning layer use hierarchical decomposition in

the space of partially ordered plans. The use of this planning space gives more
degrees of freedom to the planner. The choice of such an algorithm has to be
carefully elaborated. It is generally not the question, how to give the agent all
the possible options, but how to restrict the choice to a minimal subset that
needs to be considered. In fact, this is one of the advantages of BDI systems
that constrain the options to a small number precompiled plan schemata. BDI
systems also use deliberation and filtering techniques to further decimate the
choices.

7 Conclusion

We have investigated the composition of a deliberative planner with a BDI frame-
work forming a new hybrid system with combined characteristics. The use of a
state-based planner on a planning problem extended by BDI concepts space

126 A. Walczak et al.

allows to easily merge those two paradigms. Implementing the planner in an
object-oriented language and representing the planning domain with object-
based models further facilitates the integration with BDI frameworks devised
with such concepts in mind. The main requirement for the planner was per-
formance at the low-level of execution. The planning problem representation
included many places for application of domain specific knowledge including
action preconditions, goal distance functions and utility functions.

Further an integration schema was proposed, where the BDI system is used
as system controller responsible for the upper part of the intentional structure.
It uses a deliberative planner in situations where precompiled plans are hard to
devise in advance. In this schema the planner performs short term planning and
produces plans with a constructed proof of correctness. The resulting plans are
handed directly to the scheduler. Four cases have been identified that require
changes in the semantics of goal handling in the BDI framework. These situation
may trigger a re-planning process in order to create plans that better suit the
problem on hand.

The approach has been verified in a puzzle domain to test the scalability of the
planner showing comparable results with existing planning systems. The whole
hybrid system has been investigated on the basis of the loader dock scenario.
Here multiple agents had to plan their way through a packet store and coordinate
their activities in order to cope with the load introduced by trucks coming in
and going out. Worker agents could handle this domain because their intentional
structure has been completed by plans created at runtime. On the other hand,
the BDI reasoning could retain its reactive and deliberative characteristic.

The future of this work includes advances on the part of the planner. Tech-
niques should be investigated to include concurrent planning and planning under
uncertainty and embed it into a BDI reasoning framework. We anticipate that
development of complex planning domains would require modeling and debug-
ging tools. The abstraction given by knowledge representation is particularly
important to this planning approach. Techniques for the representation of plan-
ning domains should be used to facilitate it.

References

1. Georgeff, M.P., Pell, B., Pollack, M., Tambe, M., Wooldrige, M.: The belief-desire-
intention model of agency. In: Intelligent Agents, 5th International Workshop,
ATAL’98. Springer, Paris (1998) 1–10

2. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambrige, MA (1987)

3. De Silva, L., Padgham, L.: A comparison of BDI based real-time reasoning
and HTN based planning. In: AI 2004: Advances in Artificial Intelligence, 17th
Australian Joint Conference on Artificial Intelligence, Cairns, Australia, Springer
(2004) 1167–1173

4. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical
reasoning. Computational Intelligence 4 (1988) 349–355

Augmenting BDI Agents with Deliberative Planning Techniques 127

5. Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for BDI
agent systems. In: Third German conference on Multi-Agent System TEchnologieS
(MATES-2005). (2005)

6. Shut, M., Wooldridge, M.: The control of reasoning in resource-bounded agents.
The Knowledge Engineering Review 16(3) (2001)

7. Ghallab, M., Nau, D., P.Traverso: Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers (2004)

8. Edelkamp, S., Hoffmann, J., Littman, M., Younes, H.: The 4th international plan-
ning competition 2004 (IPC-2004) (2004) Hosted at the International Conference
on Automated Planning and Scheduling 2004 (ICAPS-2004).

9. Kvarnström, J., Magnusson, M.: TALplanner in IPC-2002: Extensions and control
rules. Journal of Artificial Intelligence Research (JAIR) 20 (2003) 343–377

10. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning: An experiment
with a mobile robot. In: Proceedings of the sixth National Conference on Artificial
Intelligence (AAAI-87), Seattle, Washington (1987) 677–682

11. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for BDI
agent systems. In: The Second International Workshop on Programming Multi
Agent Systems. (2004) 9–20

12. Walczak, A.: Planning and the belief-desire-intention model of agency. Master’s
thesis, University of Hamburg (2005)

13. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In
Bordini, R., Dastani, M., Dix, J., Seghrouchni, A., eds.: Multi-Agent Programming,
Kluwer Academic Publishers (2005)

14. Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agent -
components for intelligent agents in Java (1999)

15. FIPA: FIPA Contract Net Interaction Protocol Specification. FIPA. (2001)
16. Fischer, K., Müller, J.P., Pischel, M.: Unifying control in a layered agent archi-

tecture. Technical Report TM-94-05, Deutsches Forschungszentrum für Künstliche
Intelligenz GmbH, Kaiserslautern, DE (1994)

17. Despouys, O., Ingrand, F.F.: Propice-plan: Toward a unified framework for plan-
ning and execution. In Biundo, S., Fox, M., eds.: Recent Advances in AI Planning,
5th European Conference on Planning, ECP’99, Durham, UK, Springer (1999)
278–293

18. Wilkins, D.E., Myers, K.L., Wesley, L.P.: Cypress: Planning and reacting un-
der uncertainity. In Burstein, M.H., ed.: ARPA/Rome Laboratory Planning and
Scheduling Initiative Workshop Proceedings. Morgan Kaufmann Publishers Inc.,
San Mateo, CA (1994)

19. De Silva, L., Padgham, L.: Planning on demand in BDI systems. In: International
Conference on Automated Planning and Scheduling, Monterey, California (2005)

20. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.:
SHOP2: An HTN planning system. Journal of Artificial Intelligence Research 20
(2003) 379–404

21. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3–4) (1971) 189–208

22. Meneguzzi, F.R., Zorzo, A.F., da Costa Móra, M.: Propositional planning in BDI
agents. In: Proceedings of the 2004 ACM symposium on Applied computing, ACM
Press (2004) 58–63

23. Móra, M.C., Lopes, J.G., Viccari, R.M., Coelho, H.: BDI models and systems:
Reducing the gap. In: Proceedings of the 5th International Workshop on Intelligent
Agents, Springer (1999)

ALBA: A Generic Library for Programming

Mobile Agents with Prolog

Benjamin Devèze, Caroline Chopinaud, and Patrick Taillibert

Thales Airborne Systems
2 avenue Gay-Lussac, 78851 Elancourt - France
{firstname.lastname}@fr.thalesgroup.com

Abstract. This paper presents ALBA, a generic library dedicated to the
commissioning of mobile agents written in Prolog. This library offers a
handful of mechanisms for autonomous agent creation, execution, com-
munication and mobility, whose implementation strongly respects the
principles of robustness, decentralization of data, flexibility and generic-
ity. In this perspective, the following paper mainly focuses on ALBA ar-
chitecture and implementation with an emphasis on the technical choices
which were made to provide these essential features. It therefore presents
an innovative migration protocol, a research algorithm of agents solely
identified by their names. It exposes some considerations about commu-
nication handling in a fully decentralized environment and some ideas
towards a distributed modularity of systems. It also highlights an agent
model, called Reasoning Threads, that is being used on top of ALBA to
program cognitive agents.

1 Introduction

Since the emergence of multiagent systems (MAS), the corresponding research
community has grown considerably and has been hard at work to provide agent
communication standards mainly based on the speech act theory [2]. Important
efforts have been made to formalize the main characteristics of agents, focusing
on agent-oriented languages able to describe the behaviour of an intelligent agent.
An abundant literature can be found about MAS related concepts like social
attitudes, organization, cooperation or autonomy.

Unfortunately, the design of practical tools that can effectively support MAS
programming and deployment appears to miss the necessary maturity to be
widely adopted and used for large-scale industrial applications. A remaining gap
persists between theories and concrete implementations that prevents us from
taking the full benefits of this technology.

In order to demonstrate the added-value of the multiagent paradigm and to con-
vince the remaining sceptic researchers and industrials, it is necessary to provide
efficient programming constructs that facilitate the implementation of the essential
concepts used in MAS. It is now admitted that MAS deal with flexibility, robust-
ness, decentralization, modularity and scalability [21]. This should be kept in mind
whendeveloping new tools in this domain, so as not to alter these valuable qualities.

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 129–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

130 B. Devèze, C. Chopinaud, and P. Taillibert

Despite the numerous approaches and platforms architectures that have been
proposed for agents commissioning, there is no general agreement on a par-
ticular method that would combine all the advantages of the agent paradigm.
Platforms are often too centralized and often rely on imperative object-oriented
languages, like Java, for agents implementation, which are not so well suited
for this task [18]. It is especially the case for the kind of applications we have
in mind in our group, that could be characterized as an attempt to apply the
multiagent methodology to what is generally called real-time applications built
on multitasked operating systems. These applications, which in our case concern
mission systems embedded in aircrafts (sea or ground surveillance, coordinated
observation missions by UAV -Unmanned Air Vehicles-, etc.) are generally com-
plex since they not only manage a lot of tasks simultaneously but also rely
upon complex algorithms whose duration cannot always be predicted (Artificial
Intelligence approaches are more and more often necessary to implement the
requirements of the new mission systems in preparation). To explore the various
possible ways to make these systems evolve from a multitask to a multiagent
perspective, a powerful implementation language capable of rapid agent model
experimentation and AI algorithms development was needed. The most simple
infrastructure was also needed in order to be able to easily merge our agents in
an existing system and prove, without a complete redesign, that the multiagent
approach was an alternative to present practices. That is the reason why ALBA
has been designed as a library rather than a platform as is most often the case.
Mobility was also a point since it makes it really easier to commission our agents
on changing environments (all agents can be created on one computer -whose
access is easier or devoted to our experiments- and then dynamically moved to
the available computers at the time of the experiment).

Section 2 exposes the main reasons that led to the development of ALBA.
Section 3 gives a general overview of the main aspects of our system that, in a
way, put it apart from the majority of other tools. In section 4 we go thoroughly
into some practical considerations about communications handling and in section
5 a dynamic agent search algorithm is detailed. Section 6 explains in depth
the migration protocol and offers some views about agents mobility. Section 7
introduces a specific agent model, called Reasoning Threads, that is being used
on top of ALBA to program cognitive agents illustrating a possible usage of the
library. Section 8 describes some industrial applications already implemented
using ALBA and the Reasoning Threads. Finally, sections 9 and 10 draw the
main lessons of our proposals and discuss related and future works.

2 Why a New Platform?

Recent years have seen a considerable growth in the number of platforms, with
a current total of over 100 products. It is then legitimate to ask why it has been
necessary for us to develop a new one. The first exigence we had was that the
platform had to allow the commissionning of agents written in Prolog.

ALBA: A Generic Library for Programming Mobile Agents with Prolog 131

2.1 Why Prolog?

Without exhaustively listing all the qualities of Prolog, the main reasons that
naturally led us to use it to implement ALBA and our agents are stated here.

First of all, thanks to its two main mechanisms of unification and resolu-
tion and thanks to its efficiency in manipulating tree structures, Prolog is very
well suited to deal with artificial intelligence problems and has already proved
it in the past. As a declarative language benefiting from the first-order logic
expressiveness, it seems to be the perfect candidate to serve as a basis for new
agent-oriented programming languages. Moreover, Prolog allows to dynamically
modify source code and offers a good environment to implement introspection
capabilities. It is also a good choice for incremental verification of systems which
are constructed with provability in mind.

Another essential argument, in our concern, was the natural efficiency of Pro-
log. It permits to develop and test very quickly some new prototypes and ideas.
Its inherent productivity constitutes a great benefit in research activities without
affecting at all the readability or the maintainability of source codes.

Prolog is an interpreted language and so as with Java, the same source code
can run on various platforms and operating systems which is important to fulfill
portability requirements at minimum cost.

Though, it can be argued that the Prolog language is not well equipped to
deal with some specific tasks like real-time processing, modern graphical user
interface development or efficient implementation of naturally imperative algo-
rithms. Solutions can be found using the bidirectional interfaces to C, C++,
Java which are provided with most mature Prolog implementations.

Last but not least, these implementations come with all the functionalities
needed for the system to work: TCP/IP sockets, processes handling, Input/
Output, etc. Finally, they provide advanced debuggers, efficient garbage collec-
tors, constraint solvers and all the facilities programmers can expect nowadays.

2.2 Related Works

Obviously this part is mainly focused on platforms based on or providing logic
programming facilities.

QU Prolog [6] and Ciao Prolog [14] both are Prolog extensions which offer
multithreading and multi-machine execution of Prolog code. Agent behaviour
programming is done thanks to production rules but other models can be imple-
mented. Both offer also a blackboard for memory sharing or synchronization.

Jinni [24] is a platform allowing the programming of agents in BinProlog and
Java. Jinni is based on a simple Things, Places, Agents ontology. Things are Pro-
log term, Places are processes running on computers and Agents are collections
of threads executing a set of goals. The threads and the agents can communicate
by using a blackboard and term unification. The threads can migrate between
Places to communicate with the other threads and particularly to accelerate
the resolution. Jinni can be used, for example, to simulate stock market, with
the blackboard allowing agents coordination. Jinni is an interesting platform to

132 B. Devèze, C. Chopinaud, and P. Taillibert

program Prolog agents but the blackboard oriented communication is a limita-
tion we prefered to avoid in our context.

Eel [7] also deserves a mention since it implements communicating processes
with an original point to point communication through term unification. But
asynchronous processes were looked for, as carried out in ALBA.

tuProlog [9] might have been a good candidate since its design enforces in-
teraction which is essential when agent implementation is concerned. Its close
integration to Java is also an interesting feature, let alone for programming man-
machine interfaces. The TuCSoN architecture [8] which was developped from
tuProlog is a good example of what is looking for with ALBA: a programming
environment facilitating the implementation of various agent or coordination
models adapted to our needs such as the coordination artifact for time-aware
agents presented in [11].

Thus, it looks as if several opportunities were offered for Prolog agent commis-
sioning. So, why an industrial as Thales chose exploring new tracks rather than
exploiting the existing solutions ? One of the reason was that not all features we
had in mind were gathered in a unique platform (mobility, decentralized agent
search) but the main point was our need for a robust Prolog basis such as the
one offered by SICS with Sicstus Prolog and the existence in the company of a
lot of legacy code for artifical intelligence tools (interval constraint propagation,
for example) or applications that simply could not be neglected just for the sake
of agent programming.

When non-Prolog platforms implementing mobility are concerned, they gener-
ally rely on imperative object-oriented languages for agents implementation (and
not on Prolog) and are often dedicated to one specific or a limited set of agent
models which was not satisfying. To our knowledge, all mobile agent platforms
offer a centralization (from a server providing agents management in a same
context or machine, to a central server managing agents in different computers).
In every case, the migration, the agent creation, the communication are done
through a dedicated entity which knows the local agents and its remote equiva-
lents. These principles mainly exist for scalability and security reasons because
the platforms are often used in the Web context. Our MAS approach is quite
different. Our main objective is to distribute the agents of a given MAS over
several computers in order to reduce and adapt the system workload throughout
the execution. Moreover, robustness and functioning simplicity are essential. So,
we tried to distribute platform specifications and services into the agent through
the ALBA library.

3 Overview of ALBA

3.1 Main Features

ALBA is a Prolog library dedicated to the commissioning of agents written
in Prolog. It uses SICStus Prolog [1] which is a mature and complete Prolog
implementation with high performance and industrial qualities.

ALBA: A Generic Library for Programming Mobile Agents with Prolog 133

ALBA offers the basic functionalities expected from a multiagent platform. It
brings the necessary mechanisms for agents creation, execution, communication
and mobility.

The first noticeable point about ALBA is its complete decentralization. It
means that the code implementing the platform functionalities is embedded in
each agent. In this perspective, neither any central program nor any kind of
data centralization are required for it to work. Hence, as it has already been
mentioned, ALBA can better be described as a predicate library rather than as
a platform. Of course, decentralization raises a lot of problems, especially related
to communications handling. A substantial part of this paper is devoted to the
practical proposals we have implemented to tackle these issues.

ALBA is also about genericity. That means that no assumption is made on the
agent models used. Therefore, ALBA can be used with any kind of agent models
(Agent-0[22], AgentSpeak[25], BDI[19], etc.). Since, at this stage, the research
community has not agreed on a specific universal model which can be used for
any kind of applications, and since it is even doubtful that such a model exists, it
seems to be the best way to proceed when industrial applications are concerned.
Moreover, this approach greatly facilitates experimentations on various models
and on the way they can be combined to reach our expected goals. In the same
range of ideas, no assumption is made on the language used by the agents to
communicate.

Another point of interest is flexibility. As a generic low-level tool, the library
assures, purposely, a restricted range of basic functionalities. It is a core tool that
can be extended at will to provide higher level functionalities, as mentionned in
sections 7 and 8.

3.2 General Overview

An ALBA agent is constituted of two parts, the embedded library in charge of
all the basic services (messaging, contacts, etc.) and the behaviour of the agent
itself that is coded in Prolog. Each agent is an independent Prolog process and
has a unique name that fully identifies it in the system. Therefore, in all the
paper, the agents will be represented as in Figure 1. All agents can communicate
via asynchronous messages.

ALBA has been developed in a multi-machine perspective and, of course,
our systems can be distributed on a pool of computers over a network. For
the remaining of the paper, the term computer will refer to any computer in a
network where an ALBA daemon is running. These daemons are in charge of
executing on remote machines, the creation or migration functions called by an

Fig. 1. An ALBA Agent

134 B. Devèze, C. Chopinaud, and P. Taillibert

Fig. 2. ALBA Overview

agent and the associated data transfers (see section 6 for more details). Therefore,
agents can be created locally or on remote computers and can migrate from a
computer to another. A general overview is presented in Figure 2.

3.3 Towards Distributed Modularity

In ALBA, agents are created from proto-agents using the predicate:
create agent(+Host, +Name, ?Param, +Contacts, +ProtoAgent, -FullName).1

Proto-agents are to agents what classes are to objects in the object-oriented
paradigm. Each agent running in a MAS can be viewed as a specific instance of a
proto-agent. For the sake of reusability, proto-agents aim to be as generic as pos-
sible. They consist of the Prolog source code describing the “to-be-instantiated”
agents behaviour and of any resource files they could need. Each proto-agent
is stored as a directory or as an archive file and takes its name from its corre-
sponding directory name or filename. Each newly created agent is given a specific
workspace initialized from the content of the proto-agent it is based on. When an
agent creates another agent from a proto-agent A, ALBA automatically searches
A following the order given in its proto-agent path, querying remote daemons
when necessary. The proto-agent is then automatically retrieved to localhost as
a compressed archive and can be used to launch the new agent.

To accomplish their tasks, agents may need specific libraries, for example li-
braries dedicated to image analysis, interval computations, etc. Including these
generic libraries in each proto-agent would be costly and nearly unmaintainable,
that is why ALBA use quite the same mechanisms as for proto-agents to auto-
matically find and retrieve required libraries which are shared at MAS level. To
do so, ALBA offers the following predicates which are encapsulations of theirwell-
known Prolog homologues: alba consult(+LibName), alba compile(+LibName),
alba use module(+LibName).

Now, let us suppose we want to run a MAS to simulate a mission with boats
and planes using various libraries. We have nothing in our machine but we know

1 A few predicates of the library are introduced but generally parameters are not
described for being quite self-explicit.

ALBA: A Generic Library for Programming Mobile Agents with Prolog 135

the address of remote servers hosting required data. Provided we just have a dae-
mon running on our computer, we can build a complete customized MAS using
proto-agents and libraries coming from various machines, serving as distributed
banks of generic agents and resources.

4 Communications Handling

Communications handling is a hard task that, at low-level, needs some knowledge
about network protocols that seems far from intelligent agents problematics.
However, communication is a fundamental aspect of multiagent paradigm, as
being the only way for cognitive agents to share information. Indeed, it is by
prohibiting the usage of complex sharing methods (shared memory, semaphores,
etc.) that MAS can pretend to reduce the structural complexity of systems.

As stated before agents are able to communicate asynchronously through
messages. In this view, ALBA offers direct point-to-point communications with
send message(+Message, +Recipient) predicate. Communications relied on TCP/
IP sockets which can seem inappropriate for local communications but is required
for remote transmissions.

Agents are identified by their names, whose uniqueness is ensured by ALBA
using the following naming scheme, which only exploits information locally saved
in each agent: AgentName/SonName/etc. Note that names are stored and ma-
nipulated as Prolog terms, allowing us to deduce immediately from an agent’s
name the identity of all his ancestors. Another interesting feature of this naming
scheme is that it allows the merging of completely distinct MAS into a single
one. Indeed, provided that the seed agents of each MAS to merge have a unique
name -which is not a severe requirement-, it is clear that there won’t be any
name clash issues. Therefore, relying on the search method described in section 5,
merging two distinct MAS can be done by simply linking one agent from each
MAS to each other.

Exchanged messages are Prolog terms which is extremely convenient when it
comes to parsing and analyzing their contents. No other assumptions are made
about messages contents and, of course, every classical communication languages
(KQML[16], FIPA ACL, etc.) can be used.

ALBA users can build up their systems on the following postulate: for the
same pair of agents, messages ordering is preserved. More formally, if m1 and
m2 are two messages sent from A to B, m1 being transmitted before m2, then
B will receive m1 before m2. This is ensured by TCP protocol and the library
internal mechanisms.

Error treatment is an important aspect of communications handling. ALBA
acts as a layer on top of TCP/IP to manage every detail related to communica-
tions, such as connections, transmissions, proper disconnections and so on. It also
has to deal with any potential low-level errors that may occur. Agent program-
mers work at a higher abstraction level and must not have to be preoccupied
about these kind of considerations. Communications handling in ALBA, can be
compared to ordinary postal service. It is, therefore, up to agents to prevent

136 B. Devèze, C. Chopinaud, and P. Taillibert

any possible loss of essential information thanks to specific protocols. For ex-
ample, ALBA comes with acknowledgments facilities, which can be used for
synchronous communications if it becomes necessary.

It can be useful for an agent to use some appropriate messages treatment
strategies. It becomes nearly inevitable for very solicited agents so as to rationally
handle the mass of received messages. Strategies can give the precedence to some
specific senders or to a given kind of messages that need to be processed in pri-
ority. That is why, in addition to the classical read message(-Message, ?Sender,

+Timeout) routine, ALBA provides the predicate read all messages(-Messages,

?Senders) that returns all the messages available at call time. It is possible to
instantiate the variable Senders in order to get only the messages sent by given
senders. Note that an agent messagebox is stored in memory using Prolog terms,
allowing to easily handle advanced requests by unification.

5 Search Method

5.1 Introduction

All agents of the system are identified by their unique name. This is the only
information accessible to the end user of ALBA. All communications being based
on TCP/IP sockets, the library has to provide internal mechanisms to recover
the IP address and port number of an agent from its name. In order to achieve
this goal, we refused to use any kind of name servers or matchmaker agent (re-
spectively white and yellow pages) or, more generally, to assign this task to
any form of central system that would constitute potential drawbacks for our
applications. Relying on a centralized approach would affect the robustness of
ALBA because a single fault in this central organ could paralyse all the system.
Moreover, excessive centralization constitutes a major bottleneck, as the central
entity has to stay aware of every changes occurring in the MAS (agent creation,
migration, etc.) and to answer all the queries of the agents willing to commu-
nicate. Hence, the central entity has to deal with a very important amount of
messages with an overload risk. These issues can be partially solved using several
matchmaker entities communicating with each other, ensuring the integrity of
their names database and implementing mechanisms of data redundancy to pre-
vent the system to fully depend on the existence of a single entity. This solution
has, though, an important cost and that is the reason why an alternative way
was chosen.

To address this problem2, we aim at taking the best advantage of the natural
distributivity of MAS and to exploit information stored locally in each agent.
The problem can be viewed as a graph search problem where nodes represent
agents and where arcs stand for connections between agents, i.e. an agent A is
linked to an agent B if and only if A knows the correct IP address and port of B
at a given time T. The problem is more complex than a traditional graph search
because, here, the topology of the graph, since it is a model of the MAS, can
2 So far, only the replacement of centralized “white pages” is achieved.

ALBA: A Generic Library for Programming Mobile Agents with Prolog 137

evolve dynamically during the search. It is also important to understand that,
even if agent A has some information about B, we cannot be sure that these
data are up-to-date.

Therefore, the search algorithm need to be able to successfully retrieve agents
in an unstable graph whose arcs may be wrong, by propagating a wave of mes-
sages in the MAS. It needs to fulfill the three following objectives:

1. the wave of messages generated by the algorithm must come to an end, no
matter what is the configuration of the MAS

2. if agent A searches agent B, which is in the same connected component, the
algorithm must be able to find B

3. the amount of messages sent during the search need to be limited as much
as possible

A Naive Algorithm. The general idea is very simple. When agent A wants to
communicate with agent B and does not know how to reach it, A sends a search
message to all its contacts. The search message contains: some necessary infor-
mation to reach the search initiator (SI), a blacklist of already visited contacts
(BL) and the name of the target agent (TA). Of course the algorithm works
and fulfills the two first objectives but generates too many messages to be used.
Indeed, in the worst case, i.e. N agents interconnected (complete graph) with a
search for an agent absent from the MAS, it is straightforward to see that the
algorithm induces a wave of (N − 1)! messages.

5.2 An Improved Algorithm

The idea, to limit the number of sent messages, is to exploit local information
stored in each agent, i.e. its contacts, in order to anticipate a step forward. Thus,
when an agent receives a search message it adds itself and all its non already
visited contacts in the blacklist. Unfortunately, this algorithm does not ensure
anymore that an agent will find any agent in its connected component. It is
illustrated in Figure 3.

Fig. 3. Error in search

In this example, A wants to reach agent D. A sends a search message to
its contacts B and C with A, B and C in the BL. A cannot effectively send
the message to C because it has outdated localization information concerning
C. Note that B holds updated position of C and could reach it, but of course it

138 B. Devèze, C. Chopinaud, and P. Taillibert

does not even try to do so because C is in the BL. Even if D and A belong to
the same connected component, A cannot find D anymore.

It is therefore necessary to add a local error treatment mechanism. An auto-
matic ping pong procedure could have been used to ensure that each contacts
are reachable before sending them the search message. It is not reliable and too
heavy to be used in large MAS, especially when it appears that, in the majority
of cases, there won’t be any error to handle. That’s why an alternative method
has been proposed, described in algorithm 1, which we have called Waves-Search
algorithm.

In this method, agents automatically take into account communication errors
and resend their search messages with an appropriate corrected blacklist.

Algorithm 1. Waves-Search algorithm
1: if OwnName = Target Agent (TA) then � I am the searched agent!
2: Get in contact with the Search Initiator
3: else
4: if TA ∈ OwnContacts and search message successfully sent to TA then
5: return
6: end if
7: Forwards ← OwnContacts − Blacklist (BL)
8: UpdatedBL ← BL + OwnName + Forwards
9: for all Agent ∈ Forwards do

10: Send updated message with UpdatedBL to Agent
11: end for
12: Errors ← List of agents in Forwards that could not receive the search message
13: if Errors �= ∅ then
14: NewForwards ← Forwards − Errors
15: NewUpdatedBL ← UpdateBL − Errors
16: for all Agent ∈ NewForwards do
17: Send updated message with NewUpdatedBL to Agent
18: end for
19: end if
20: end if

This algorithm works well for applications involving a reasonable number of
agents organized in favorable interconnected topologies. It is also important to
understand that the algorithm is launched only a limited number of times to
interconnect two agents at first or as an alternative procedure if an agent has
lost some contacts. Though, it suffers some scalability issues and would not be
suitable for massive MAS with all possible topologies. It can be viewed as a
first step towards a fully effective dynamic search method in a decentralized
environment.

The problem is very close to search processes in Gnutella-like unstructured and
fully decentralized peer to peer networks and to classical application layer routing
protocols, which are active fields of research [10]. A possible improvement would
be to adapt Distributed Hash Table based methods like Chord, CAN, Pastry or

ALBA: A Generic Library for Programming Mobile Agents with Prolog 139

mobile ad hoc network routing protocols like DSR or AODV to the specificities of
the problem. It may imply to soften the second objective offering only guarantees
in probability to find an existing agent. Another very promising approach would
be to exploit the agents genealogy, which can be deduced from agents name,
in order to direct the search very quickly and with bound guarantees on the
number of messages sent for all topologies.

6 Migration Protocol

Mobility, i.e. the support to the network transport of agent code and execution
state, has become one of the fundamental feature any modern platform should
provide. Mobile agent advantages, which are stressed in several papers, such as
[4,17], explain this imperative requirement. Listing only a few of them, agent
mobility allows network traffic reduction, dynamic MAS reconfiguration, load
balancing and is of great support to improve scalability and fault-tolerance.
This section describes the migration protocol used by ALBA and discusses its
main characteristics.

6.1 Description

At any time, agents can use the predicate migrate(+Host), to keep on with
their work on any remote computer. Note that ALBA provides only the nec-
essary mechanisms for agents mobility. Each agent chooses its target host and
the best moment to migrate relying upon migration strategies established by
the developer. This is of course reasonable considering that these strategies are
application-dependant and stand at a higher abstraction level than ALBA. To
achieve the migration task, ALBA proceeds as described in Figure 4.

1. The migrant wants to move to a remote host.
2. A clone of the migrant is created on the remote host.
3. The clone creates a connection with the migrant contacts, the migrant stops

its activity and only forwards messages to its clone.
4. The connections between the migrant and its old contacts are cut.
5. The migrant process destroys itself, the clone has replaced it on the remote

target.

Now that only a general overview of the migration protocol has been given,
it is necessary to describe what happens in each agent playing a part in the
procedure.

From the migrant perspective. The migrant first creates a clone of itself on
the target computer. In practice, the workspace of the migrant is transferred by
the ALBA layer in the migrant, to the remote ALBA daemon as a compressed
archive file and the remote daemon launches the clone agent. The migrant reads
all its pending messages and transfers all its messages and ALBA related internal

140 B. Devèze, C. Chopinaud, and P. Taillibert

Fig. 4. Migration Protocol

data, such as its contacts, directly to its clone. All messages received during this
phase are forwarded by the migrant to the clone. Note that all the forwarded
messages are encapsulated properly to inform the clone of its real senders. Then,
the migrant immediately sends an end of migration message to the clone and
closes itself.

From the clone perspective. The clone is launched from the same source
code as the migrant. It first connects to its father, i.e. the migrant, which is
the only agent of the system aware of its existence. As described in section 4,
its internal name has the form migrant name/clone(X). It then initializes its
internal data with those provided by the migrant. As soon as it receives migrant
contacts information, it sends them a special internal update message stating
that it is the new agent named migrant name. This message is automatically
interpreted by the ALBA layer which just replaces migrant information with
clone address and port. Upon the reception of the end of migration message
from the migrant, the clone changes its internal name to migrant name and
calls the restart predicate that has to be written by the agent developer and
define the first behaviour of the restarted agent.

From the migrant contacts perspective. From the migrant contacts every-
thing is transparent. There is only a hidden substitution in their internal data
from the migrant address and port to the clone address and port.

ALBA: A Generic Library for Programming Mobile Agents with Prolog 141

6.2 Discussion

One of the main interest of this protocol is that the migrant and its clone are
running together during a very short period of time and that no messages are
lost during this transitory phase. Indeed, if one of the migrant contact sends the
migrant a message when it is still running, it will forward it to the clone. If the
migrant is already closed but the contact has not already received the special
internal update message, the message will be queued and sent as soon as the
clone contacts it.

At first, it seems that ALBA provides only weak mobility because no migra-
tion of execution state is involved, the migrating agents are explicitly restarted
at their destination. However, ALBA comes with the two following routines:
put into luggage(+Name, +Value) and get from luggage(+Name, ?Value), allow-
ing to save and restore data in a specific part of the memory which is auto-
matically transferred during a migration. These predicates are callable at any
time during agent execution and represent a convenient way to manage what
can be viewed as a migration luggage. The agent model described in section 7
can be fully defined by its internal data. Thus, using their migration luggage
properly, as described in section 7, agents implemented with this model are able
to completely resume their execution after a migration, which becomes a trans-
parent procedure. Therefore, the migration strength depends of the agent model
which is used, the library offers strong migration at agent level if the model used
is migration compliant, i.e. if the agent behaviour can be resumed by the sole
knowledge of its luggage.

7 Reasoning Threads: A Model of Agency

As a low-level library dedicated to the commissioning of agents, ALBA is well
suited to serve as the core of various agent model experimentations. Using
directly the communication routines offered by ALBA would, of course, be inad-
equate to implement intelligent agents involved in complex interaction and co-
ordination processes. This section illustrates the genericity of ALBA and shows
how it can be used with a specific model based on Reasoning Threads (RTs) to
deploy these agents.

7.1 Basic Concepts

Autonomy is a central concept of agency. Following [12], we adopt an opera-
tional definition of autonomy stating that an agent A is autonomous with regard
to an agent B if and only if B cannot predict definitely A decisions. An agent
can decide not to process a message e.g. because it has more important goals
to satisfy or because of workload. Therefore, agents need to be able to react
accordingly if they do not receive expected answers and must foresee commit-
ments breaking. Agents can not predict the exact behaviour of other agents, but
they can delimitate classes of alternative behaviours that can be expected. As a
consequence, agents plans need to be conditional over possible actions/reactions

142 B. Devèze, C. Chopinaud, and P. Taillibert

of other agents. Thus, thinking agents in term of autonomous entities constitutes
a way to improve fault tolerance at the source, dealing with loss of messages,
death of other agents or machine overload. Another central concept to reduce the
structural complexity of systems is the limited dependency, we assume that in-
teractions with other agents and the environment only take place by exchanging
messages, prohibiting memory or resource sharing without an agent mediation.
These two principles influence a lot the agentification of systems and the imple-
mentation of agents.

Messages play a central role. They are the only information agents perceive
about others activities. Therefore, it has been necessary to provide an archi-
tecture that makes messages analysis and handling easier. As an agent gets
dynamically involved in many interaction processes with various agents it has
also been necessary to provide some mechanisms to properly handle different
contexts simultaneously. As a matter of fact, when a human receives his mail he
generally roughly sorts it on the basis of the sender and content of each received
item and then link each received letter with a previous context or create new
contexts to handle further mail exchanges attached to new topics. In the same
range of idea, threads in forum allow the sorting of messages according to their
object and topic and can consequently handle multiple contexts simultaneously.
These metaphores were of great influence for the RT approach.

7.2 Description

The RT library acts as a layer on top of ALBA encapsulating the low-level
routines offered by the library which are not available anymore to the agent
programmer (Cf. Fig. 5).

Fig. 5. An ALBA Agent based on RT

Each RT can be viewed as a context. A RT template is described as an ex-
tended finite state machine representing a procedural knowledge associated to a
context. Thus, a RT conveys some explicit knowledge about the interaction pro-
cesses taking place among agents in order to reach a goal in a specific context.
When a RT template is instanciated, a local memory is created to store the data
relevant to this context. A global memory is accessible to all RTs. All messages
arrive to a switch which is in charge of the messages routing to the relevant RTs
according to a set of grammar rules that work on the sender, the syntax and the
content of incoming messages (Cf. Fig. 6). If a message can not be filtered by
the switch, it is automatically directed to the default RT which plays a crucial
role to identify new contexts and to handle unknown messages.

ALBA: A Generic Library for Programming Mobile Agents with Prolog 143

Fig. 6. Architecture Overview

RTs are dynamically instanciated and destroyed according to the evolution of
the system. As an agent may be simultaneously involved in multiple interaction
processes, multiple RTs can of course be instanciated at the same time. For
example, if an agent answers to various proposals from different agents, it would
possibly have multiple instances of RTs describing the Contract Net protocol
[23] running at the same time to handle these interactions. Grammar rules, RT
templates and currently instanciated RTs can be modified, added or deleted at
run time allowing to dynamically adapt the behavior of running agents.

A RT consists of a set of states Si, an initial state begin ∈ Si, a final state
end ∈ Si, a set of state transition rules Ri, a local memory Memi and each state
si ∈ Si is associated with a timeout tsi ∈ Ti (in seconds or off) modifiable at
runtime; that is RTi = 〈Si, Ti, Ri, Memi〉.

A transition rule consists of a condition and an associated action. The invoca-
bility conditions of a rule consist of the RT current state, an incoming event and
a facultative filter that has access to local and global memories. An event can
be (1) an incoming message from another agent (msg(Message, Sender)), (2) an
internal signal (signal(Signal, RT ID)) or (3) a timeout. Internal signals allow
communications between various RTs which can be useful for example to resolve
conflicts between various contexts. Each rule specifies an action that is executed
when it is fired and the next state of the RT. An action can consist of any
Prolog code including calls to encapsulated ALBA routines (message sending,

144 B. Devèze, C. Chopinaud, and P. Taillibert

migration, agent creation) and calls to RT related routines (grammar rule mod-
ifications, RT modifications, RT invocations, memory modifications). Each rule
is written as a Prolog clause:

rt(Type, State-in, State-out, Event, Action) :- Filter.

Agents plans may be incomplete or inaccurate and the knowledge to extend
or correct them may become available only at runtime. Therefore, agents need
to be able to extend and modify their existing plans and also to build new
plans dynamically. For this reason, State-out can be a free variable in order to
incrementally build a plan at runtime.

7.3 Execution Model

When the switch is initialized, the default RT and the agent global memory
are created. The interpreter keeps up to date RTs related data like the names,
current states, current timeouts and local memories of currently instanciated
RTs. It also maintains a queue of pending events.

The execution cycle works as follows:

Algorithm 2. Execution Cycle
1: while there is an instanciated RT do
2: compute the timeout to apply (minimum of the remaining timeouts of the cur-

rently instanciated RTs)
3: read all pending messages during at most timeout seconds
4: if there are messages to handle then
5: apply the filtering strategy routine to select the message m to process
6: use the grammar rules on m to compute the RTs to trigger
7: else
8: wake up the RTs in timeout
9: end if

10: sequentially execute actions of the transitions that have been fired
11: remove RTs in state “end”
12: end while

Since state transition rules are fired sequentially, it is not necessary to use
mutual exclusion mechanisms to protect accesses to the global memory of the
agent, memories will stay consistent while an RT action is executed. This ap-
proach reduces the systems complexity still allowing to handle multiple contexts
simultaneously.

Note that the filtering strategy predicate can be redefined to implement
various strategies to give precedence to specific messages or senders according
to the context. The default behaviour is a queue.

7.4 Mobility

As described in section 6, ALBA provides strong migration at agent level if the
model used is migration compliant as is the case for the RT approach. Indeed,

ALBA: A Generic Library for Programming Mobile Agents with Prolog 145

when the migration routine is called in the body of an action, the interpreter
ensures that the migration procedure is the last operation executed just after
the branching to the new state, leading to the following steps:

1. the states, memories and related data are stored in the agent migration
luggage

2. the migration predicate of ALBA is explicitly invoked
3. the revelant data are restored on target host when migration is achieved
4. the timeouts of currently instantiated RTs are updated
5. the execution is resumed

7.5 Discussion

Related works can be found in the field of coordination languages with COOL
[3] or AgenTalk [15] which respectively introduced the notions of conversations
and scripts which share the same philosophy as the RTs. These two languages do
not use grammar rules for messages filtering but propose to use user maintained
or automatically maintained identifiers to route incoming messages to conversa-
tions. The grammar rules of the RT approach are much more flexible since they
can be modified at runtime and allow to route a given event to multiple running
RTs. It also contributes to the clear definition of contexts based on the syn-
tax and semantics of incoming events. Moreover, provided the introspection and
metaprogramming facilities offered by Prolog and the language used to describe
RTs, we defend the idea that it will be easier to extend the mechanisms intro-
duced by COOL and AgenTalk to develop the flexibility and the introspection
abilities of our agents.

A script, a conversation or a RT can be viewed as a procedural knowledge
for an agent to reach a certain goal. In this perspective, these approaches have
much in common with Procedural Reasoning System (PRS) [13]. However, PRS
is mainly focused on a single goal-directed agent whereas the coordination lan-
guages are focused on social aspects describing protocols among agents. There-
fore, we now aim at combining these approaches and extending the RT model
with explicit goals and planification abilities in order to improve the proactivity
of our agents which is so far limited to timeouts and internal signals processing.
Thus, further works will naturally be focused on ways to achieve a good balance
between goal-directed and reactive behavior in a timely fashion.

Looking at the execution cycle of the system, the question of actions duration
is clearly of great importance to answer appropriately to incoming events in a
timely fashion. In this perspective, [11] propose to delegate “long” computations
to computational artifacts controlled by agents.

8 Applications

ALBA and the RT approach have already been used in various applications
of our department. Only one of them is mentioned here: Interloc. Interloc is

146 B. Devèze, C. Chopinaud, and P. Taillibert

a software for mobile marine targets localization. In Interloc, planes seek to
detect boats while remaining stealth, i.e. without using their own radar, but
by exploiting the targets emissions to deduce their positions. The system is
implemented as a MAS. Each boat is represented by an agent, just as each plane.
Another agent manages the graphical interface, another one makes measures
and an agent by plane is in charge of localization computations. Therefore, a
substantial number of agents (10 to 25) are to run and interact at the same time.
Interloc was a perfect testbed application to validate ALBA and especially its
migration protocol. Indeed, considering the significant number of agents running
simultaneously, migration was interesting for load balancing purposes.

As explained, as a low-level tool, ALBA provides purposely a very limited
set of functionalities. Thus, to carry out these applications, a lot of useful tools
have been developed on top of it, which proved the flexibility and extensibility
of the library. For instance, an agent was developed to facilitate human agents
interactions with active MAS via a graphical interface. It mainly allows to create
or kill agents and comes with a console to easily communicate with running
agents by sending them messages.

ALBA has been well tested in practice and has proved to be efficient in achieving
its tasks. The RT approach has proved to be extremely easy and convenient to use
thanks to the natural separation of contexts which allows the programmer to focus
on local problems attached to specific contexts. The ALBA library and its related
tools are now mature enough to be used in larger scale industrial applications.

9 Future Works

Even though, ALBA is already quite functional, several aspects have to be im-
proved and new functionalities need to be added.

The increasing development of agents mobility and the distribution of MAS
over heterogeneous networks raised the question of security. Therefore, to be
deployed in untrustworthy environments, ALBA needs to support cryptography
mechanisms to provide communications encryption and agents authentication.
In the same perspective, all manipulated archives need to be encrypted too.

In our applications, agents are to interact with entities that are not really agents
but just some runtime devices providing a specific kind of function or service.
There is, for example, an entity that is used by agents to display graphical inter-
faces. This is not a common agent, it does not use ALBA and cannot fully interact
with other agents. Therefore, ALBA needs to properly handle this kind of entities
introduced in [20], as a first-class abstraction in MAS under the name “artifacts”.

We have also begun to develop a generic library allowing to define events
linked with any chosen predicates. Programmers can use these predefined events
to inject their own code on specific points of interest. The library relies on
Prolog introspection mechanisms. It would allow to easily customize ALBA with
external files and without modifying its core. It could also be used to dynamically
control agents as in [5]. More advanced studies are to be made to explore the
potential benefits of this library.

ALBA: A Generic Library for Programming Mobile Agents with Prolog 147

10 Conclusion

We have presented in this paper a generic Prolog library called ALBA, dedicated
to MAS deployment. We described thoroughly its architecture and implementa-
tion with an emphasis on the technical choices made to provide robustness,
decentralization, flexibility and modularity. With a strong respect for these
features, we introduced an innovative migration protocol, an agent research al-
gorithm and some considerations about communications handling. We also high-
lighted some ideas to achieve a distributed modularity of agents. Relying upon
the described mechanisms, it is already possible to merge completely distinct
MAS, to tackle on-line repairing of agents or to stop any agent for some time
and relaunch it later, minimizing the impact on the rest of the system. Part of
our current work is focused on these experimentations, on ALBA improvements
and on its applications.

Now that we have a usable library dedicated to MAS commissioning, our main
concern is also to explore the best ways to express autonomous agents behaviour.
A preliminary work has been presented in this paper with the description of an
agent model based on Reasoning Threads. We now aim to extend this model and
to propose a new declarative high-level agent-oriented programming language
built on top of Prolog.

References

1. Available at http://www.sics.se/isl/sicstuswww/site/index.html.

2. John Langshaw Austin. How to Do Things with Words. Clarendon Press, 1962.

3. M. Barbuceanu and M. S. Fox. Cool: A language for describing coordination in
multiagent systems. In Victor Lesser and Les Gasser, editors, Proceedings of the
First International Conference oil Multi-Agent Systems (ICMAS-95), pages 17–24,
San Francisco, CA, USA, 1995. AAAI Press.

4. David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile Agents: Are They
a Good Idea? Technical report, IBM Research Division Report, 1995.

5. Caroline Chopinaud, Amal El Fallah Seghrouchni, and Patrick Taillibert. Preven-
tion of Harmful Behaviors within Cognitive and Autonomous Agents. In Proc. of
the 17th European Conference on Artificial Intelligence (ECAI’06), pages 205–209,
August 2006.

6. K. Clark, P.J. Robinson, and R. Hagen. Multithreading and message communica-
tion in Qu-prolog. Theory and Practice of Logic Programming, 1(3), 2001.

7. Torbjrn S. Dahl. The eel programming language and internal concurrency in logic
agents. In the Proceedings of the Workshop on Multi-Agent Systems in Logic Pro-
gramming, (ICLP’99), Las Cruces, New Mexico, November 29 - December 4 1999.

8. Enrico Denti and Andrea Omicini. From tuple spaces to tuple centers. Sci. Comput.
Program., 41:277–294, 2001.

9. Enrico Denti, Andrea Omicini, and Alessandro Ricci. Multi-paradigm java-prolog
integration in tuprolog. Sci. Comput. Program., 57(2):217–250, 2005.

10. Gang Ding and Bharat K. Bhargava. Peer-to-peer file-sharing over mobile ad hoc
networks. In PerCom Workshops, pages 104–108, 2004.

148 B. Devèze, C. Chopinaud, and P. Taillibert

11. Cédric Dinont, Emmanuel Druon, Philippe Mathieu, and Patrick Taillibert. Arti-
facts for time-aware agents. In Fifth Int. conf. on Autonomous Agents and Multi-
agents Systems (AAMAS 06), Hakodate, Japan, 8 - 12 May 2006.

12. Mark d’Inverno and Michael Luck. Understanding autonomous interaction. In
ECAI, pages 529–533, 1996.

13. M. Georgeff and A. Lansky. Procedural knowledge. Proceedings of the IEEE
(Special Issue on Knowledge Representation), 74:1383–1398, 1986.

14. Daniel Cabeza Gras and Manuel V. Hermenegildo. The ciao module system: A
new module system for prolog. Electr. Notes Theor. Comput. Sci., 30(3), 1999.

15. Kazuhiro Kuwabara, Toru Ishida, and Nobuyasu Osato. Agentalk: Coordination
protocol description for multiagent systems. In Victor Lesser, editor, Proceedings
of the First International Conference on Multi–Agent Systems, page 455, San Fran-
cisco, CA, 1995. MIT Press.

16. Yannis Labrou and Tim Finin. A Proposal for a New KQML Specification. Tech-
nical Report TR CS-97-03, Computer Science and Electrical Engineering Depart-
ment, University of Maryland Baltimore County, February 1997.

17. Danny B. Lange and Mitsuru Oshima. Seven Good Reasons for Mobile Agents.
Commun. ACM, 42(3):88–89, 1999.

18. James Odell. Objects and Agents Compared. Journal of object technology, 1(1):41–
53, 2002.

19. A. S. Rao and M. P. Georgeff. BDI-Agents: from Theory to Practice. In Proceedings
of the First Intl. Conference on Multiagent Systems, San Francisco, 1995.

20. Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Programming MAS with
Artifacts. In Proc. of the Third International Workshop on Programming Multi-
Agent Systems’05, pages 163–178, July 2005.

21. Pierre-Michel Ricordel and Yves Demazeau. From Analysis to Deployment: A
Multi-agent Platform Survey. LNCS, 1972:93–105, 2001.

22. Yoav Shoham. Agent-oriented programming. Artif. Intell., 60(1):51–92, 1993.
23. Reid G. Smith. The contract net protocol: High-level communication and control

in a distributed problem solver. IEEE Transactions on Computers, 29(12), 1980.
24. Paul Tarau. Jinni: Intelligent mobile agent programming at the intersection of java

and prolog. In Proceedings of PAAM’99, London, 1999.
25. D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a Concurrent Agent-

Oriented Language. In M. Wooldridge and N. R. Jennings, editors, Intelligent
Agents: Theories, Architectures, and Languages (LNAI Volume 890), pages 386–
402. Springer-Verlag: Heidelberg, Germany, 1995.

Bridging Agent Theory and Object Orientation:

Agent-Like Communication Among Objects

Matteo Baldoni1, Guido Boella1, and Leendert van der Torre2

1 Dipartimento di Informatica. Università di Torino - Italy
{baldoni,guido}@di.unito.it

2 University of Luxembourg
leendert@vandertorre.com

Abstract. This paper begins with the comparison of the message-
sending mechanism, for communication among agents, and the method-
invocation mechanism, for communication among objects. Then, we
describe an extension of the method-invocation mechanism by introduc-
ing the notion of “sender” of a message, “state” of the interaction and
“protocol” using the notion of “role”, as it has been introduced in the
powerJava extension of Java. The use of roles in communication is shown
by means of an example of protocol.

1 Introduction

The major differences of the notion of agent w.r.t. the notion of object are often
considered to be “autonomy” and “proactivity” [25]. Less attention has been
devoted to the peculiarities of the communication capabilities of agents, which
exchange messages while playing roles in protocols. For example, in the contract
net protocol (CNP) an agent in the role of initiator starts by asking for bids,
while agents playing the role of participants can propose bids which are either
accepted or rejected by the Initiator.

The main features of communication among agents which emerge from the
CNP example are the following:

1. The message identifies both its sender and its receiver. E.g., in FIPA the
acceptance of a proposal is:
(accept-proposal :sender i :receiver j :in-reply-to

bid089 :content X :language FIPA-SL).
2. The interaction with each agent is associated to a state which evolves ac-

cording to the messages that are exchanged. The meaning of the messages is
influenced by the state. E.g., in the FIPA iterated contract net protocol, a
“call for proposal” is a function of the previous calls for proposals, i.e., from
the session.

3. Messages are produced according to some protocol (e.g., a call for proposal
must be followed by a proposal or a reject).

4. The sender and the receiver play one of the roles specified in the protocol
(e.g., initiator and participant in the contract net protocol).

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 149–164, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

150 M. Baldoni, G. Boella, and L. van der Torre

5. Communication is asynchronous: the response to a message does not nec-
essarily follow it immediately. E.g., in the contract net protocol, a proposal
must follow a call for proposal and it must arrive, no matter when, before a
given deadline.

6. The receiver autonomously decides to comply with the message (e.g., making
a proposal after a call for proposal).

The message metaphor has been originally used also for describing method
calls among objects, but it is not fully exploited. In particular, message-exchange
in the object oriented paradigm has the following features:

1. The message is sent to the receiver without any information concerning the
sender.

2. There is no state of the interaction between sender and receiver.
3. The message is independent from the previous messages sent and received.
4. The sender and the receiver do not need to play any role in the message

exchange.
5. The interaction is synchronous: an object waits for the result of a method

invocation.
6. The receiver always executes the method invoked if it exists.

These two scenarios are rather different but we believe that the object-oriented
(OO) paradigm can learn something from the agent-oriented world. The research
question of this paper is thus: is it profitable to introduce in the OO paradigm
concepts taken from agent communication? how can we introduce in the OO
paradigm the way agents communicate? And as subquestions: which of the above
properties can be imported and which cannot? How to translate the properties
which can be imported in the OO paradigm? What do we learn in the agent-
oriented world from this translation?

The methodology that we use in this paper is to map the properties of agent
communication to an extension of Java, powerJava [3,4,5], which adds roles to
objects. Roles are used to represent the sender of a message (also known as the
“player of the role”), to represent the state of the interaction via role instances,
allowing the definition of protocols and asynchronous communication as well as
the representation of the different relations between objects.

The choice of the Java language is due to the fact that it is one of the prototyp-
ical OO programming languages; moreover, MAS systems are often implemented
in Java and some agent programming languages are extensions of Java, e.g., see
the Jade framework [8] or the JACK software tool [24]. In this way we can di-
rectly use complex interaction and roles offered by our extension of Java when
building MAS systems or extending agent programming languages.

Furthermore, we believe that in order to contribute to the success of the
Autonomous Agents and Multiagent Systems research, the theories and concepts
developed in this area should be applicable also to more traditional views. It is
a challenge for the agent community to apply its concepts outside strictly agent-
based applications. The OO paradigm is central in Computer Science and, as
observed and suggested also by Juan and Sterling [18], before AO can be widely

Bridging Agent Theory and Object Orientation 151

used in industry, its attractive theoretical properties must be first translated to
simple, concrete constructs and mechanisms that are of similar granularity as
objects.

The paper is organized as follows. In Section 2 we show which properties
of agent communication can be mapped to objects. In Section 3 we introduce
how we model interaction in powerJava and in Section 4 we discuss how to use
roles in order to model complex forms of interaction between object inspired
by agent interaction, we also illustrate the contract net protocol among objects
using powerJava. Conclusions end the paper.

2 Communication Between Objects

When approaching an extension of a language or of a method, the first issue that
should be answered is whether that extension brings along some advantages. In
our specific case, the question can be rephrased as: Is it useful for the OO
paradigm to introduce a notion of communication as developed in MAS? We
argue that there are several acknowledged limitations in OO method invocation
which could be overcome, thus realizing what we could call a “session-aware
interaction”.

First of all, objects exhibit only one state in all interactions with any other ob-
ject. The methods always have the same meaning, independently of the identity
or type of the object from which they are called.

Second, the operational interface of Abstract Data Types induces an asymmet-
rical semantic dependency of the callers of operations on the operation provider:
the caller takes the decision on what operation to perform and it relies on the
provider to carry out the operation. Moreover, method invocation does not al-
low to reach a minimum level of “control from the outside” of the participating
objects [2].

Third, the state of the interaction is not maintained and methods always offer
the same behavior to all callers under every circumstance. This limit could be
circumvented by passing the caller as a further parameter to each method and
by indexing, in each method, the possible callers.

Finally, even though asynchronous method calls can be simulated by using
buffers, it is still necessary to keep track of the caller explicitly.

The above problems can be solved by using the way communication is man-
aged between agents and defining it as a primitive of the language. By adopting
agent-like communication, in fact, the properties presented in Section 1 – with
the only exception of autonomy, (6), which is a property distinguishing agents
from objects – can be rewritten as in the following:

1. When methods are invoked on an object also the object invoking the method
(the “sender”) must be specified.

2. The state of the interaction between two objects must be maintained.
3. In presence of state information, it is possible to implement interaction pro-

tocols because methods are enabled to adapt their behavior according to

152 M. Baldoni, G. Boella, and L. van der Torre

the interaction that has occurred so far. So, for instance, a proposal method
whose execution is not preceded by a call for proposals can detect this fact
and raise an exception.

4. The object whose method is invoked and the object invoking the method play
each one of the roles specified by the other, and they respect the requirements
imposed on the roles. Intuitively, requirements are the capabilities that an
object must have in order to be able to play the role.

5. The interaction can be asynchronous, thanks to the fact that the state of
the interaction is maintained.

For a better intuition, let us consider as an example the case of a simple
interaction schema which accounts for two objects. We expect the first object
to wait for a “call for proposal” by the other object; afterwords, it will invoke
the method “propose” on the caller. The idea is that the call for proposal can
be performed by different callers and, depending on the caller, a different infor-
mation (e.g. the information that it can understand) should be returned by the
first object. More specifically, we can, then, imagine to have an object a, which
exposes a method cfp and waits for other objects to invoke it. After such a call
has been performed, the object a invokes a method propose on the caller. Let
us suppose that two different objects, b and c, do invoke cfp. We desire the data
returned by a to be different for the two callers.

Since we look at the agent paradigm the solution is to have two different inter-
action states, one for the interaction between a and b and one for the interaction
between a and c. In our terminology, b and c interact with a in two distinct
roles (or better, role instances) which have distinct states: thus it is possible to
have distinct behaviors depending on the invoker. If the next move is to “ac-
cept” a proposal, then we must be able to associate the acceptance to the right
proposal.

In order to implement these properties we use the notion of role introduced
in the powerJava language in a different way with respect to how it has been
designed for.

3 Modelling Interaction with powerJava

In [1,12,21,23] the concept of “role” has been proved extremely useful in pro-
gramming languages for several reasons. These reasons range from dealing with
the separation of concerns between the core behavior of an object and its inter-
action possibilities, reflecting the ontological structure of domains where roles
are present, from modelling dynamic changes of behavior in a class to foster-
ing coordination among components. In [3,4,5] the language powerJava is in-
troduced: powerJava is an extension of the well-known Java language, which
accounts for roles, defined within social entities like institutions, organizations,
normative systems, or groups [7,14,26]. The name powerJava is due to the fact
that the key feature of the proposed model is that institutions use roles to supply

Bridging Agent Theory and Object Orientation 153

the powers for acting (empowerment). In particular, three are the properties
that characterize roles, according to the model of normative multiagent systems
[9,10,11]:

Foundation: A (instance of) role must always be associated with an instance
of the institution it belongs to (see Guarino and Welty [16]), besides being
associated with an instance of its player.

Definitional dependence: The definition of the role must be given inside the
definition of the institution it belongs to. This is a stronger version of the
definitional dependence notion proposed by Masolo et al. [19], where the
definition of a role must include the concept of the institution.

Institutional empowerment: The actions defined for the role in the definition
of the institution have access to the state and actions of the institution and
to the other roles’ state and actions: they are powers.

Roles require to specify both who can play the role and which powers are
offered by the institution in which the role is defined. The objects which can play
the role might be of different classes, so that roles can be specified independently
of the particular class playing the role. For example a role customer can be
played both by a person and by an organization. Role specification is a sort
of double face interface, which specifies both the methods required to a class
playing the role (requirements, keyword “playedby”) and the methods offered to
objects playing the role (powers keyword “role”). An object, which plays a role,
is empowered with new methods as specified by the interface.

To make an example, let us suppose to have a printer which supplies two dif-
ferent ways of accessing to it: one as a normal user, and the other as a superuser.
Normal users can print their jobs and the number of printable pages is limited
to a given maximum. Superusers can print any number of pages and can query
for the total number of prints done so far. In order to be a user one must have
an account which is printed on the pages. The role specification for the user is
the following:

role User playedby AccountedPerson {
int print(Job job);
int getPrintedPages();

}

interface AccountedPerson {
Login getLogin();

}

The superuser, instead:

role SuperUser playedby AccountedPerson {
int print(Job job);
int getTotalPrintedPages();

}

154 M. Baldoni, G. Boella, and L. van der Torre

Requirements must be implemented by the objects which act as players.

class Person implements AccountedPerson {
Login login; // ...
Login getLogin() {

return login;
}

}

Instead, powers are implemented in the class defining the institution in which
the role itself is defined. To implement roles inside an institution we revise the
notion of Java inner class, by introducing the new keyword definerole instead
of class followed the name of the role definition that the class is implementing.

class Printer {
final static int MAX_PAGES_PER_USER;
private int totalPrintedPages = 0;

private void print(Job job, Login login) {
totalPrintedPages += job.getNumberPages();
// performs printing

}

definerole User {
int counter = 0;
public int print(Job job) {
if (counter > MAX_PAGES_USER)

throws new IllegalPrintException();
counter += job.getNumebrPages();
Printer.this.print(job, that.getLogin());
return counter;

}
public int getPrintedPages(){
return counter;

}
}

definerole SuperUser {
public int print(Job job) {
Printer.this.print(job, that.getLogin());
return totalPrintedPages;

}
public int getTotalPrintedpages() {
return totalPrintedPages;

}
}

}

Roles cannot be implemented in different ways in the same institution and
we do not consider the possibility of extending role implementations (which is,
instead, possible with inner classes), see [5] for a deeper discussion.

Bridging Agent Theory and Object Orientation 155

As a Java inner class, a role implementation has access to the private fields
and methods of the outer class (in the above example the private method print
of Printer used both in role User and in role SuperUser) and of the other roles
defined in the outer class. This possibility does not disrupt the encapsulation
principle since all roles of an institution are defined by who defines the institution
itself. In other words, an object that has assumed a given role, by means of it,
has access and can change the state of the corresponding institution and of the
sibling roles. In this way, we realize the powers envisaged by our analysis of the
notion of role.

The class implementing the role is instantiated by passing to the construc-
tor an instance of an object satisfying the requirements. The behavior of a role
instance depends on the player instance of the role, so in the method implemen-
tation the player instance can be retrieved via a new reserved keyword: that,
which is used only in the role implementation. In the example the invocation of
that.getLogin() as a parameter of the method print.

All the constructors of all roles have an implicit first parameter which must
be passed as value the player of the role. The reason is that to construct a
role we need both the institution the role belongs to (the object the construct
new is invoked on) and the player of the role (the first implicit parameter). For
this reason, the parameter has as its type the requirements of the role. A role
instance is created by means of the construct new and by specifying the name
of the “inner class” implementing the role which we want to instantiate. This
is like it is done in Java for inner class instance creation. Differently than other
objects, role instances do not exist by themselves and are always associated to
their players.

Methods can be invoked from the players, given that the player is seen in its
role. To do this, we introduce the new construct

receiver <-(role) sender
This operation allows the sender (player of the role) to use the powers given
by “role” when it interacts with the receiver (institution) the role belongs to. It
is similar to role cast as introduced in [3,4,5] but it stresses more strongly the
interaction aspect of the two involved objects: the sender uses the role defined
by the receiver for interacting with it. Let us see how to use this construct in
our running example. The first instructions in the main create a printer object
hp8100 and two person objects, chris and sergio. chris is a normal user while
sergio is a superuser. Indeed, instructions four and five define the roles of these
two objects w.r.t. the created printer. The two users invoke method print on
hp8100. They can do this because they have been empowered of printing by
their roles. The act of printing is carried on by the private method print. Nev-
ertheless, the two roles of User and SuperUser offer two different way to interact
with it: User counts the printed pages and allows a user to print a job if the
number of pages printed so far is less than a given maximum; SuperUser does
not have such a limitation. Moreover, SuperUser is empowered also for view-
ing the total number of printed pages. Notice that the page counter is maintained

156 M. Baldoni, G. Boella, and L. van der Torre

in the role state and persists through different calls to methods performed by a
same sender/player towards the same receiver/institution as long as it plays the
role.

class PrintingExample {
public static void main(String[] args) {

Printer hp8100 = new Printer();
Person chris = new Person();
Person sergio = new Person();

hp8100.new User(chris);
hp8100.new SuperUser(sergio);

(hp8100 <-(User) chris).print(job1);
(hp8100 <-(SuperUser) sergio).print(job2);
(hp8100 <-(User) chris).print(job3);

System.out.println("Chris has printed " +
(hp8100 <-(User) chris).getPrintedPages() + " pages");

System.out.println("The printer hp8100 has printed a total of " +
(hp8100 <-(User) sergio).getTotalPrintedPages() + " pages");

}
}

By maintaining a state, a role can be seen as realizing a session-aware in-
teraction, in a way that is analogous to what done by cookies or Java sessions
for JSP and Servlet. So in our example, it is possible to visualize the number of
currently printed pages, as in the above example. Note that, when we talk about
playing a role we always mean playing a role instance (or qua individual [19] or
role enacting agent [13]) which maintains the properties of the role.

An object has different (or additional) properties when it plays a certain role,
and it can perform new activities, as specified by the role definition. Moreover,
a role represents a specific state which is different from the player’s one, which
can evolve with time by invoking methods on the roles. The relation between the
object and the role must be transparent to the programmer: it is the object which
has to maintain a reference to its roles. However, a role is not an independent
object, it is a facet of the player.

Since an object can play multiple roles, the same method will have a different
behavior, depending on the role which the object is playing when it is invoked.
It is sufficient to specify which the role of a given object, we are referring to, is.
In the example chris can become also superuser of hp8100, besides being a
normal user

hp8100.new SuperUser(chris);
(hp8100 <-(SuperUser) chris).print(job4);
(hp8100 <-(User) chris).print(job5);

Bridging Agent Theory and Object Orientation 157

(d)

�

�

� �

��

� �

��
��

�

�

�

�

(a) (b) (c)

Fig. 1. The possible uses of roles

Notice that in this case two different sessions will be kept: one for chris as
normal user and the other for chris as superuser. Only when it prints its jobs
as a normal user the page counter is incremented.

4 Uses of Roles in powerJava

In this paper we exploit the language powerJava in a new way which allows
modelling the agent inspired vision of interaction among objects. The basic idea
of powerJava is that objects (e.g. hp8100), called institutions, are composed of
roles which can access the state of the institution and of other sibling roles and,
thus, can coordinate with each other [3]. However, since an institution is just an
object which happens to contain role implementations, nothing prevents us to
consider every object as an institution, and to consider the roles as different ways
of interacting with it. Many objects can play the same role (a printer can have
many users) as well as the same object can play different roles (chris is both
a user and a superuser). Each role instance has its own state, which represents
the state of the interaction with the player of the role.

Figure 1 illustrates the different interaction possibilities given by roles, which
do not exclude the traditional direct interaction with the object when roles are
not necessary. Other possibilities like sessions shared by multiple objects are not
considered for space reasons.

Arrows represent the relations between players and their respective roles,
dashed arrows represent the access relation between objects, i.e., their powers.

– Drawing (a) illustrates the situation where an object interacts with another
one by means of the role offered by it. This is, for instance, the case of sergio
being a SuperUser of hp8100.

– Drawing (b) illustrates an object (e.g., chris) interacting in two different
roles with another one (hp8100 in the example). This situation is used when

158 M. Baldoni, G. Boella, and L. van der Torre

an object implements two different interfaces for interacting with it, which
have methods (like print) with the same signature but with different mean-
ing. In our model the methods of the interfaces are implemented in the roles
offered by the objects to interact with them. The role represent also the
different sessions of the interaction with the different objects.

– Drawing (c) illustrates the case of two objects which interact by means of the
roles of an institution (which can be considered as the context of execution).
This is the original case, powerJava has been developed for [3]; in this paper,
we used as a running example the well-known 5 philosophers scenario. The
institution is the table, at which philosophers are sitting and coordinate to
take the chopsticks and eat since they can access the state of each other. The
coordinated objects are the players of the role chopstick and philosopher.
The former role is played by objects which produce information, the latter by
objects which consume them. None of the players contains the code necessary
to coordinate with the others, which is supplied by the roles.

– In drawing (d) two objects interact with each other, each playing a role
offered by the other. This is often the case of interaction protocols: e.g., an
object can play the role of initiator in the Contract Net Protocol if and only
if the other object plays the role of participant. Indeed, the Contract Net
Protocol is reported as an example in the following section.

The four cases can be combined to representmore complex interaction schemas.
This view of roles inspires a new vision of the the OO paradigm, which ac-

counts for the way humans conceptualize objects performed in philosophy and
above all in cognitive science [15]. In particular, cognitive science has highlighted
that properties of objects are not objective properties of the world, but they
depend on the properties of the agent conceptualizing the object: objects are
conceptualized on the basis of what they “afford” to the actions of the entities
interacting with them. Thus, different entities conceptualize the same object
in different ways. We translate this intuition in the fact that an object offers
different methods according to which type of object it is calling it: the meth-
ods offered (the powers of a role) depend on the requirements offered by the
caller.

4.1 The Contract Net Protocol Example

Hereafter, we report an example set in the framework of interaction protocols,
describing an implementation of the well-known contract net protocol. The ex-
ample follows the interaction schema (d), reported in the previous section, and
it is substantially different than the analogous example reported in a previous
paper [4]. In fact, the solution proposed here is distributed instead of being cen-
tralized (let us denote by this name a solution respecting case (c) in the previous
section). The advantage of the old solution was that players did not need to
know anything about the coordination mechanism. In this case, instead, each
object also supplies a role for its counterpart, which describes the powers that

Bridging Agent Theory and Object Orientation 159

are given to the counterpart in the interaction. For instance, the object that will
play the initiator role will define the powers of the participants, and vice
versa. The powers are the messages that the initiator will understand; this
is very different than our previous proposal, where the powers only allowed to
start a negotiation or to take part to a negotiation, depending on the role, and
the exchanged messages were hidden inside the institution.

In this new version, roles are also used for maintaining interaction sessions. In
the following example, refuseProposal can be executed only if cfp has already
been executed, this can be tracked thanks to the role state and, in particular,
thanks to variable state.

Observe that when the object, offering a role, is supposed to answer something,
it needs to invoke a method, which is supplied as a power of a role, which is in
turn offered by the object to which it is responding. In the contract net, a
possible answer to a cfp is the performative propose. In this case, see also the
code reported at the end of this section, the above interaction is implemented
by the instruction:

(that <-(Participant) Peer.this).propose(getProposal(task))

Here, Peer.this refers to the object offering the role initiator; such an object
means to play the role of Participant and, in particular, to invoke the power
propose offered by this role. The role participant is offered by the object which
is currently playing the initiator (identified in the above code line by that), see
Fig. 2.

Participant
Peer

evaluateTask

propose

Peer

this
Peer.this that

Initiator cfp

Fig. 2. Description of the interaction between an Initiator and a Participant, when,
after a “cfp” performative, the answer will be a “propose” performative

The communication is asynchronous, since the proposal is not returned by
the cfp method.

Notice that an object which is currently playing the role of participant in
a given interaction, can at the same time play the role of initiator in another
interaction. See the method evaluateTask, in which a new interaction is started
for executing a subtask by creating the two roles in the respective objects and
by linking players to them:

role Initiator playedby InitiatorReq {
void cfp(Task task);
void rejectProposal(Proposal proposal);
void acceptProposal(Proposal proposal);

160 M. Baldoni, G. Boella, and L. van der Torre

}
interface InitiatorReq { // must implement the role specification Participant
}

role Participant playedby ParticipantReq {
void propose(Proposal proposal);
void refuse(Task task);
void inform(Object result);
void failure(Object error);

}

interface ParticipantReq { // must implement the role specification Initiator
}

class Peer implements ParticipantReq, InitiatorReq
{

definerole Initiator {
final static int STATE_1 = 1;
final static int STATE_2 = 2;
int state = STATE_1;

public void cfp(Task task) {
if (state != STATE_1)

throws new IllegalPerfomativeException();
state = STATE_2;
if (evaluateTask(task))

(that <-(Participant) Peer.this).propose(getProposal(task));
else

(that <-(Participant) Peer.this).refuse(task);
}

public void refuseProposal(Proposal proposal) {
if (state != STATE_2)

throws new IllegalPerformativeException();
removeProposal(proposal);
state = STATE_1;

}

public void acceptProposal(Proposal proposal) {
if (state != STATE_2)

throws new IllegalPerfomativeException();
try {

(that <-(Participant) Peer.this).inform(performTask(proposal, task));
} catch(TaskExecException err) {

(that <-(Participant) Peer.this).failure(err);
}
state = STATE_1;

}

Bridging Agent Theory and Object Orientation 161

}

private boolean evaluateTask(Task task) {
Task subTask; // ...
this.new Participant(peer);
peer.new Initiator(this);
(peer <-(Initiator) this).cfp(subTask); // ...

}

definerole Initiator { ... }

}

5 Conclusion

In this work, we have proposed the introduction of a form of interaction between
objects, in the OO paradigm, which borrows from the theory about agent com-
munication. The main advantage is to allow session-aware interactions in which
the history of the occurred method invocations can be taken into account and,
thus, introducing the possibility of realizing, in a quite natural way, agent inter-
action protocols. The key concept which allows communication is the role played
by an object in the interaction with another object. Besides proposing a model
that describes this form of interaction, we have also proposed an extension of
the language powerJava that accounts for it.

One might wonder whether the introduction of agent-like communication be-
tween objects gives us some feedback to the agent world. We believe that the
following lessons can be learnt, in particular, concerning roles:

– Roles must be distinguished in role types and role instances: role instances
must be related to the concept of session of an interaction.

– The notion of role is useful not only for structuring institutions and organi-
zations but for dealing with interaction among agents.

– The notion of affordance can be used to allow agents to interacts in different
ways with different kind of agents.

In this paper, we show a different way of using powerJava exploiting roles to
model communications where: the method call specifies the caller of the object,
the state of the interaction is maintained, methods can be part of protocols,
objects play roles in the interaction and method calls can be asynchronous as in
agent protocols.

This proposal builds upon the experience that the authors gathered on the
language powerJava [3,4,5,6], which is implemented by means of a precompiler.
Basically powerJava shares the idea of gathering roles inside wider entities with
languages like Object Teams [17] and Ceasar [20]. These languages emerge as
refinements of aspect oriented languages aiming at resolving practical limitations
of other languages. In contrast, our language starts from a conceptual modelling
of roles and then it implements the model as language constructs. Differently

162 M. Baldoni, G. Boella, and L. van der Torre

than these languages we do not model aspects. The motivation is that we want
to stick as much as possible to the Java language. However, aspects can be
included in our conceptual model as well, under the idea that actions of an
agent playing a role “count as” actions executed by the role itself. In the same
way, the execution of methods of an object can give raise by advice weaving to
the execution of a method of a role. On the other hand, these languages do not
provide the notion of role casting we introduce in powerJava. Roles as double face
interfaces have some similarities with Traits [22] and Mixins. However, they are
distinguished because roles are used to extend instances and not classes. Finally,
C# allows for multiple implementations of interfaces. None of the previous works,
however, considers the fact that roles work as sessions of the interaction between
objects.

By implementing agent like communication in an OO programming language,
we gain in simplicity in the language development, importing concepts that
have been developed by the agent community inside the Java language itself.
This language is, undoubtedly, one of the most successful currently existing
programming languages, which is also used to implement agents even though it
does not supply specific features for doing it. The language extension that we
propose is a step towards the overcoming of these limits.

At the same time, introducing theoretically attractive agent concepts in a
widely used language can contribute to the success of the Autonomous Agents
and Multiagent Systems research in other fields. Developers not interested in the
complexity of agent systems can anyway benefit from the advances in this area
by using simple and concrete constructs in a traditional programming language.

Future work concerns making explicit the notion of state of a protocol so to
make it transparent to the programmer and allow to define the same method
with different meanings in each state. Finally, the integration of centralized and
decentralized approaches to coordination among roles (drawings (c) and (d) of
Figure 1) must be studied.

References

1. A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with
roles. In Procs. of VLDB’93, pages 39–51, 1993.

2. F. Arbab. Abstract behavior types: A foundation model for components and their
composition. In Formal Methods for Components and Objects, LNCS 2852, pages
33–70. Springer Verlag, Berlin, 2003.

3. M. Baldoni, G. Boella, and L. van der Torre. Roles as a coordination construct: In-
troducing powerJava. In Procs. of MTCoord’05 workshop at COORDINATION’05,
2005.

4. M. Baldoni, G. Boella, and L. van der Torre. Bridging agent theory and object
orientation: Importing social roles in object oriented languages. In Post-Procs.
of PROMAS’05 workshop at AAMAS’05, volume 3862 of LNCS, pages 57-75,
Springer, 2006.

Bridging Agent Theory and Object Orientation 163

5. M. Baldoni, G. Boella, and L. van der Torre. Powerjava: ontologically founded
roles in object oriented programming language. In Proc. of 21st ACM Symposium
on Applied Computing, SAC 2006, Special Track on Object-Oriented Programming
Languages and Systems (OOPS 2006), pages 1414-1418, Dijon, France, April 2006.
ACM.

6. M. Baldoni, G. Boella, and L. van der Torre. Interaction among Objects via Roles
– Sessions and Affordances in Java. In Proc. of the 4th International Conference
on Principles and Practices of Programming In Java (PPPJ 2006), pages 188-193,
Mannheim, Germany, 2006).

7. B. Bauer, J.P. Muller, and J. Odell. Agent UML: A formalism for specifying
multiagent software systems. Int. Journal of Software Engineering and Knowledge
Engineering, 11(3):207–230, 2001.

8. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a
FIPA-compliant agent framework. Software - Practice And Experience, 31(2):103–
128, 2001.

9. G. Boella and L. van der Torre. Attributing mental attitudes to roles: The agent
metaphor applied to organizational design. In Procs. of ICEC’04. IEEE Press,
2004.

10. G. Boella and L. van der Torre. A game theoretic approach to contracts in mul-
tiagent systems. IEEE Transactions on Systems, Man and Cybernetics - Part C,
2006.

11. G. Boella and L. van der Torre. Security policies for sharing knowledge in virtual
communities. IEEE Transactions on Systems, Man and Cybernetics - Part A, 2006.

12. M. Dahchour, A. Pirotte, and E. Zimanyi. A generic role model for dynamic
objects. In Procs. of CAiSE’02, volume 2348 of LNCS, pages 643–658. Springer,
2002.

13. M. Dastani, V. Dignum, and F. Dignum. Role-assignment in open agent societies.
In Procs. of AAMAS’03, pages 489–496, New York (NJ), 2003. ACM Press.

14. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: an organi-
zational view of multiagent systems. In LNCS n. 2935: Procs. of AOSE’03, pages
214–230. Springer Verlag, 2003.

15. J. Gibson. The Ecological Approach to Visual Perception. Lawrence Erlabum
Associates, New Jersey, 1979.

16. N. Guarino and C. Welty. Evaluating ontological decisions with ontoclean. Com-
munications of ACM, 45(2):61–65, 2002.

17. S. Herrmann. Object teams: Improving modularity for crosscutting collaborations.
In Procs. of Net.ObjectDays, 2002.

18. T. Juan and L. Sterling. Achieving dynamic interfaces with agents concepts. In
Procs. of AAMAS’04, 2004.

19. C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and
N. Guarino. Social roles and their descriptions. In Procs. of KR’04, pages 267–277.
AAAI Press, 2004.

20. M. Mezini and K. Ostermann. Conquering aspects with caesar. In Procs. of the
2nd International Conference on Aspect-Oriented Software Development (AOSD),
pages 90–100. ACM Press, 2004.

21. M.P. Papazoglou and B.J. Kramer. A database model for object dynamics. The
VLDB Journal, 6(2):73–96, 1997.

22. N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of
behavior. In Springer Verlag, editor, LNCS, vol. 2743: Procs. of ECOOP’03, pages
248–274, Berlin, 2003.

164 M. Baldoni, G. Boella, and L. van der Torre

23. F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data and Knowledge Engineering, 35:83–848, 2000.

24. M. Winikoff. JACK - intelligent agents: An industrial strength platform. In R. H.
Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent
Programming, pages 175–193. Springer Verlag, Berlin, 2005.

25. M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2):115–152, 1995.

26. F. Zambonelli, N.R. Jennings, and M. Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. IEEE Transactions of Software Engineering and
Methodology, 12(3):317–370, 2003.

Adding Knowledge Updates to 3APL

Vivek Nigam� and João Leite

CENTRIA, New University of Lisbon,Portugal
vivek.nigam@gmail.com, jleite@di.fct.unl.pt

Abstract. 3APL is a widely known multi-agent programming language.
However, when to be used in certain domains and environments, 3APL
has some limitations related to its simplistic update operator that only
allows for updates to the extensional part of the belief base and its lack
of a language with both default and strong negation to enable the rep-
resentation and reasoning about knowledge with the open and closed
world assumptions. In this paper, we propose to address these issues by
modifying the belief base of 3APL to be represented by Dynamic Logic
Programming, an extension of Answer-Set Programming that allows for
the representation of knowledge that changes with time.

1 Introduction

In the past few years, several agent architectures and agent programming lan-
guages have been proposed. Among them we can find, for example, 3APL [9,12],
FLUX [22], IMPACT [10], DALI [8], JASON [5] and Minerva [14,18]. For a
survey on some of these systems, as well as others, see [6,7,20].

In this paper, we take a closer look at 3APL, one of the existing systems
that has recently received an increasing amount of attention, and propose some
enhancements to its language and semantics.

3APL is a logic based programming language for implementing cognitive
agents that follows the classical BDI architecture where agents have beliefs (B),
intentions (I) and desires (D) to guide their actions. The semantics of 3APL
agents is defined by a transition system composed of transition rules. The use
of 3APL provides the agent programmer with a very intuitive and simple way
to define agents. The programmer can declaratively specify the beliefs (repre-
sented by Horn Clauses) and goals (represented by conjunctions of atoms) of
agents, how they build plans to achieve such goals, and reason with their beliefs.
Furthermore, communication between agents can be done in an elegant way by
modifying the beliefs of agents, allowing for the possibility of reasoning with the
transferred messages. Despite all these interesting properties, 3APL, when to
be used in certain domains and environments, has some limitations that serve
as our motivation to propose the modifications presented in this paper. These
limitations, in our opinion, are:

� Supported by the Alβan Program, the European Union Programme of High Level
Scholarships for Latin America, no. E04M040321BR.

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 165–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

166 V. Nigam and J. Leite

1. Limited belief updates - The mechanism used by 3APL to update agent’s
beliefs is quite limited. Such updates in 3APL amount to the simple addition and
removal of facts in the agent’s belief base. It is not difficult to find a situation
where this type of belief update is insufficient. Consider an agent with a belief
base containing the rule believe(santa claus) ← mother said(santa claus), and
the fact mother said(santa claus). This agent can be seen as a child agent that
believes in everything its mother says, in this case it believes in santa claus,
because its mother said so (mother said(santa claus)). Furthermore, consider
that the agent evolves and discovers that in fact, santa claus doesn’t exist, even
though its mother said so. Since 3APL only allows for updates to the extensional
part of the belief base (i.e. its set of facts), it is not possible to achieve the desired
semantics, where believe(santa claus) is false and mother said(santa claus) is
true, by the mere addition and retraction of facts. Note that it is not possible to
remove the fact believe(santa claus) because there is none to be removed, and
if the fact mother said(santa claus) is removed it would be change the belief
base in an undesired way. To obtain the desired effect, updates in the intensional
part of the knowledge base (i.e. its set of rules) are required;

2. Limited expressive power of negative information - 3APL allows for
the use of one form of negation, namely negation by finite failure. It has been
shown that the use of default negation (not) provides good expressive power
to a language. Furthermore, the use of both default and strong negations (¬),
concurrently, such as in Answer-Set Programming [11], allows for easy ways to
reason with both the closed and open world assumptions. For example, in the
classical car-train cross, where the car should pass the cross if its sure that the
train is not coming, it is necessary to reason with the open world assumption,
where strong negation plays a key role (¬train). On the other hand, to represent
a cautious agent that would move if it believes that a place is not safe (not safe),
the use of default negation is more adequate;

In this paper, we will use Dynamic Logic Programming (DLP) [19,2,14], an ex-
tension of Answer Set Programming, to address these limitations stated above. We
propose to represent the 3APL agent’s belief base as a Dynamic Logic Program.

According to the paradigm of DLP, knowledge is given by a series of theo-
ries, encoded as generalized logic programs1, each representing distinct states
of the world. Different states, sequentially ordered, can represent different time
periods, thus allowing DLP to represent knowledge that undergoes successive up-
dates. Since individual theories may comprise mutually contradictory as well as
overlapping information, the role of DLP is to employ the mutual relationships
among different states to determine the declarative semantics for the combined
theory comprised of all individual theories at each state. Intuitively, one can
add, at the end of the sequence, newer rules (arising from new or reacquired
knowledge) leaving to DLP the task of ensuring that these rules are in force,
and that previous ones are valid (by inertia) only so far as possible, i.e. that

1 Logic programs with default and strong negation both in the body and head of rules.

Adding Knowledge Updates to 3APL 167

they are kept for as long as they are not in conflict with newly added ones, these
always prevailing.

By using DLP to represent the agent’s belief base, we address, at once, both of
the limitations stated above. The first, namely the one related to the scope of the
existing 3APL update operator, is immediately solved by the very foundational
scope of DLP, after 3APL is adapted to accommodate such change. With DLP,
3APL agents will be able to maintain an up to date belief base in situations where
both the extensional and intensional parts of the knowledge base change. Agent’s
simply have to add, at the end of the sequence of programs that constitutes their
belief base, new facts and rules alike, and not worry with emerging contradictions
with previous rules as the DLP semantics properly handles them. The second
limitation is also addressed by using DLP, as the object language used to define
the generalized logic programs allows for both default and strong negations,
inherited from Answer-Set Programming [11] that it generalizes.

En passant, we take the opportunity provided by the fact that DLP allows for
rule based updates, to also increase the expressiveness of the messages transmit-
ted between the agents, by allowing their content to consist of generalized logic
programs. By transmitting logic programs, instead of facts, agents will be able
to exchange knowledge containing rules. Depending on its beliefs, the receiving
agent can update its beliefs by the transmitted logic program, thus facilitating
learning (through rule teaching).

This remainder of the paper is distributed in the following way. We begin in
the Section 2 to give some preliminary definitions related to 3APL and Dynamic
Logic Programming that will be used throughout the paper. Later, in Section
3, we modify the syntax of some of the transition rules of 3APL. In Section
4 we present the semantics of the belief query language and of the proposed
transition rules. In Section 5, we discuss some of the added features obtained by
the modification proposed and in Section 6 we give an illustrative example with
some of the properties of the modified system. Finally, in Section 7 we conclude
with some suggestions of further investigation.

2 Preliminaries

In this Section, after introducing some concepts of logic programs, we introduce
the semantics of Dynamic Logic Programs and partially introduce the 3APL
multi agent language in its propositional form. For the sake of space, we are only
going to introduce the reader the definitions of 3APL that are relevant for this
paper, further details about the complete version of 3APL system can be found
in [9].

2.1 Languages and Logic Programs

Let K be a set of propositional atoms. An objective literal is either an atom A
or a strongly negated atom ¬A. A default literal is an objective literal preceded
by not . A literal is either an objective literal or a default literal. We also define

168 V. Nigam and J. Leite

the set of objective literals L¬
K = K ∪ {¬A | A ∈ K} and the set of literals

L¬,not
K = L¬

K∪{not L | L ∈ L¬
K} over the alphabet K. We are going to use the set

Disjunction to build the belief query language,LB, if A ∈ K then B(A),¬B(A) ∈
Disjunction, � ∈ Disjunction and if δ, δ′ ∈ Disjunction then δ∨δ′ ∈ Disjunction,
if δ ∈ Disjunction then δ ∈ LB, furthermore if φ, φ′ ∈ LB then φ ∧ φ′ ∈ LB .
Informally, LB is the smallest set containing all the formulas in conjunction
normal form, where B(.) and ¬B(.) are the literals of the language. The goal
query language, LG, is defined the following way, � ∈ LG, if A ∈ K then G(φ) ∈
LG, and if k, k′ ∈ LG then k ∧ k′ ∈ LG.

A rule r is an ordered pair Head (r) ← Body (r) where Head (r) (dubbed the
head of the rule) is a literal and Body (r) (dubbed the body of the rule) is a
finite set of literals. A rule with Head (r) = L0 and Body (r) = {L1, . . . , Ln} will
simply be written as L0 ← L1, . . . , Ln. A generalized logic program (GLP) P ,
in K, is a finite or infinite set of rules. If Head(r) = A (resp. Head(r) = not A)
then not Head(r) = not A (resp. not Head(r) = A). If Head (r) = ¬A, then
¬Head (r) = A. By the expanded generalized logic program corresponding to the
GLP P , denoted by P, we mean the GLP obtained by augmenting P with a
rule of the form not ¬Head (r) ← Body (r) for every rule, in P , of the form
Head (r) ← Body (r), where Head (r) is an objective literal2. Two rules r and r′

are conflicting, denoted by r �� r′, iff Head(r) = not Head(r′). An interpretation
M of K is a set of objective literals that is consistent i.e., M does not contain both
A and ¬A. An objective literal L is true in M , denoted by M � L, iff L ∈ M , and
false otherwise. A default literal not L is true in M , denoted by M � not L, iff
L /∈ M , and false otherwise. A set of literals B is true in M , denoted by M � B, iff
each literal in B is true in M . An interpretation M of K is an answer set of a GLP
P iff M ′ = least (P ∪ {not A | A �∈ M}), where M ′ = M ∪{not A | A �∈ M}, A is
an objective literal, and least(.) denotes the least model of the definite program
obtained from the argument program by replacing every default literal not A by
a new atom not A. For notational convenience, we will no longer explicitly state
the alphabet K. We will consider the alphabet of the language at an instant,
consisting precisely of all the propositional symbols that appear explicitly in the
program at such instant. Therefore, the alphabet of a program may change if
new propositional symbols are included in the program. Furthermore, as usual,
we will consider all the variables appearing in the programs as a shorthand for
the set of all its possible ground instantiations.

2.2 Dynamic Logic Programming

A dynamic logic program (DLP) is a sequence of generalized logic programs. Let
P = (P1, ..., Ps), P ′=(P ′

1, ..., P
′
n) and P ′′=(P ′′

1 , ..., P ′′
s) be DLPs. We use ρ (P)

to denote the multiset of all rules appearing in the programs P1, ...,Ps, and
(P ,P ′) to denote (P1, ..., Ps, P

′
1, ..., P

′
n), and (P , P ′

1) to denote (P1, ..., Ps, P
′
1).

2 Expanded programs are defined to appropriately deal with strong negation in up-
dates. For more on this issue, the reader is invited to read [15,14]. In subsequent
sections, and unless otherwise stated, we will always consider generalized logic pro-
grams to be in their expanded versions.

Adding Knowledge Updates to 3APL 169

Each position, i, of sequence of programs that constitutes a DLP, represents
a state of the world (for example different time periods), and the corresponding
logic program in the sequence, Pi, contains some knowledge that is supposed to
be true at this state. The role of Dynamic Logic Programming is to assign a
semantics to the combination of these possibly contradictory programs, by using
the mutual relationships existing between them. This is achieved by considering
only the rules that are not conflicting with rules in a GLP that is in a position
ahead in the sequence of programs. Intuitively, one could add a new GLP to
the end of the sequence, representing a new update to the knowledge base, and
let DLP solve, automatically, the possible contradictions originated by this new
update.

Definition 1 (Semantics of DLP). [14,1] Let P = (P1, . . . , Ps) be a dynamic
logic program over language K, A an objective literal, ρ (P), M ′ and least(.) as
before. An interpretation M is a stable model of P iff

M ′ = least ([ρ (P) − Rej(M,P)] ∪ Def(M,P))

Where:

Def(M,P) = {not A | �r ∈ ρ(P), Head(r) = A, M � Body(r)}
Rej(M,P) = {r | r ∈ Pi, ∃r′ ∈ Pj , i ≤ j ≤ s, r �� r′, M � Body(r′)}

We can use DLPs to elegantly represent evolving knowledge base, since their
semantics is defined by using the whole history of updates and by giving a
higher priority to the newer information. We will illustrate how this is achieved
in the following example.

Example 1. Consider a DLP, P , that initially contains only the program P1, with
the intended meaning that: if the tv is on (tv on) the agent will be watching the
tv (watch tv); if the tv is off it will be sleeping (sleep); and that the tv is
currently on.

P1 : sleep ← not tv on
watch tv ← tv on
tv on ←

The DLP has as expected, only one stable model, namely {watch tv, tv on},
where the agent is watching tv and not sleeping.

Consider now that P is updated by the program P2, stating that if there is a
power failure (power failure) the tv cannot be on, and that currently there is
a power failure.

P2 : not tv on ← power failure
power failure ←

Since the program P2 is newer than the previous program P1, the rule, tv on ←,
will be rejected by the rule not tv on ← power failure. Thus obtaining the
expected stable model {sleep, power failure}, where the agent is sleeping and

170 V. Nigam and J. Leite

the tv is no longer on. Furthermore, consider one more update stating that the
power failure ended.

P3 : not power failure ←
Because of the update P3, the rule {power failure ←} ⊂ P2 is rejected and

power failure should not be considered as true. Therefore, the rule {tv on ←
} ⊂ P1 is no longer rejected, and again the agent will conclude that the tv is on
and it did not fall asleep. As expected, the stable model of the updated program
is once more {watch tv, tv on}.

Of course, due to the lack of interesting programs on the television, it might
happen that we don’t watch tv even if the tv is on. We can use a new update,
P4, to represent this situation:

P4 : not watch tv ← bad program
good program ← not bad program
bad program ← not good program

With this new update the DLP will have two stable models, one considering
that the tv show is good and the agent is watching the tv ({good program,
watch tv, tv on}), and another that the program is bad and it is not watching
the tv ({bad program, tv on}).
As illustrated in the example above, a DLP can have more than one stable
model. But then how to deal with these stable models and how to represent the
semantics of a DLP? This issue has been extensively discussed and three main
approached are currently being considered [14]:

Skeptical - |=∩ According to this approach, the intersection of all stable mod-
els is used to determine the semantics of a DLP. As we are going to represent
the beliefs of the agent as a DLP, this approach would be best suited for more
skeptical agents, since they would only believe in a statement if all stable
models (possible worlds) support this statement;

Credulous - |=∪ According to this approach, the union of all stable models
is used to determine the semantics of a DLP. With this semantics, a DLP
would consider as true all the objective literals that are true in one of its
stable models;

Casuistic - |=Ω According to this approach, one of the stable models is se-
lected, possibly by a selection function Ω, to represent the semantics of the
program. Since the stable models of a belief base can be seen as representa-
tions of possible worlds, an agent using this approach would commit to one
of them to guide their actions.

We will denote by SM(P) the set of all stable models of the DLP P . Further
details and motivations concerning DLPs and its semantics can be found in [14].

2.3 Propositional 3APL

The 3APL agent is composed of a belief base (σ) that represents how the world
is for the agent, a goal base (γ) representing the set of states that the agent

Adding Knowledge Updates to 3APL 171

wants the world to be, a set of capabilities (Cap) that represents the set of
actions the agent can perform, a plan base (Π) representing the plans that the
agent is performing to achieve specific goals, sets of goal planning rules and plan
revision rules (PG, PR) that are used by the 3APL agent to build plans, and the
environment (ξ) in which the agent is situated. The environment can be viewed
as a set of facts.

The belief base of the agent is composed of a set of rules of the form, (A ←
A1, . . . , An), where A1, . . . , An, A ∈ K. The goal base is composed by a set
containing sets of atoms3, {Σ1, . . .Σn | Σi ⊆ K, 1 ≤ i ≤ n}. Each set contained
in the goal base will represent a goal of the agent. For example in the classical
block world problem, if the goal base of an agent contains the set of atoms
{on(A, B), on(C, D)}, a goal of the agent would be to have the block A over the
block B (on(A, B)), and simultaneously the block C over the block D (on(C, D)).

Plans can be composed of several types of actions (communication action,
mental action, external action, test action, composite plans, etc). We are in-
terested in the mental actions and communication actions. We will denote the
empty plan as ε. We will not formally define the language of plans (LP), since
it will not be extensively used in this paper, more interested readers are invited
to read [9].

Definition 2 (Mental Actions Specifications). [9] Let β ∈ LB be the pre-
condition of the mental action, α be a mental action name, LitB ={B(φ),¬B(φ) |
φ ∈ K} and β′ = β1∧, . . . ,∧βn be the postcondition of the mental action, where
β1, . . . , βn ∈ LitB Then, a mental action is a tuple 〈β, α, β′〉, and Mact is the
set of all mental actions.

The communication actions are represented by the special predicate Send(r,
type, A), where r is the name of the agent the message is being sent to, type is
the performative indicating the nature of the message and the message A ∈ K.

The semantics of an agent in 3APL is given by transition rules. We will be
concerned in this paper with two transition rules corresponding to the mental
and the communication actions.

Since the set of capabilities and revision rules that an agent maintains is the
same throughout time, we can define the concept of agent configuration which
is used to represent (the variable part of) the state of an agent at a given time.
We simplify the definition given in [9] to the propositional version of 3APL.

Definition 3 (Agent Configuration). [9] An agent configuration is repre-
sented by the tuple 〈σ, γ, Π〉, where σ is the agent’s Belief Base. γ is the agent’s
Goal Base, such that for any φ such that γ |= φ, we have that σ � φ. Π ⊆ LP×LG

is the plan base of the agent.

The semantics of the belief and goal query formulas entailment in the propo-
sitional 3APL is quite straightforward and will not be explicitly defined. The
reader is invited to read [9] for further information.
3 We differ from the notation used in [9], where the conjunction symbol ∧ is used to

represent the conjunction of goals.

172 V. Nigam and J. Leite

As mentioned earlier, the agent uses the mental actions to update its beliefs.
The update of the belief base of the 3APL agent is done in a quite simple way, by
removing or adding facts to the belief base. Informally, when the precondition
β, of a mental action 〈β, α, β′〉, is believed by the agent, it will add, as a fact
in its belief base, the literals in the postcondition β′ that are not negated and
remove the ones that are negated. The formal definition can be found in [9].

After performing a communication action Send(r, type, A), a fact, sent(r,type,
A), stating that a message A, of type type, was sent to the agent r, is included in
the belief base of the sending agent. A similar fact, received(s,type,A), is included
in the receiving agent’s belief base, stating that a message A of type type was
send by the agent s. Notice that messages exchanged between agents are only
positive atoms, as no rules can be communicated.

An agent in 3APL uses its Reasoning Rules to adopt or change plans. There
are two types of Reasoning Rules: the Goal Planning Rules and the Plan Revision
Rules, the former being used by the agent to pursue a new goal and build a
initial plan, and the later being used to revise a previously existing plan to
obtain another plan. It maybe possible that one or more rules are applicable in
a certain agent configuration, and the agent must decide which one to apply. In
3APL this decision is made through a deliberation cycle. Further details about
the deliberation cycle can also be found in [9]. Here, we will not deal with the
3APL reasoning rules.

3 Modified Syntax

In this Section, we are going to begin to address the 3APL’s limitations that we
discussed previously, namely its limited capacity of updating an agent’s beliefs
and its limited expressive power of negative information. We introduce in the
following definitions the syntax of the modified 3APL that we propose.

We begin modifying the agent configuration, by replacing the old belief base
(σ) by a DLP. The goal base (γ) and the plan base (Π) are as in the original
agent configuration.

Definition 4 (Modified Agent Configuration). The Modified Agent Con-
figuration is the tuple 〈σ, γ, Π〉, where σ is a DLP representing the agent’s belief
base. γ, Π are as before, representing, respectively, the agent’s goal base and plan
base.

Now we modify the 3APL belief query language, by incorporating two types
of negation, negation by default and strong negation. This will make it possible
for the agent to reason with the open and closed world assumptions as we will
investigate in the next Section.

Definition 5 (Modified Belief Query Language). Let φ ∈ L¬,not. The mod-
ified belief query language, LM

B is defined as follows:

Adding Knowledge Updates to 3APL 173

– � ∈ LM
B ;

– B(φ) ∈ LM
B ;

– βM , β′
M ∈ LM

B then βM ∧ β′
M ∈ LM

B ;
– βM , β′

M ∈ LM
B then βM ∨ β′

M ∈ LM
B .

Notice that differently from the Belief Query formulas in 3APL, the modified
queries don’t include symbols like ¬B(φ). As we will discuss with more details
in the next Section, we don’t feel the need for these type of symbols since the
belief operator, B(.), can have a literal, φ, as a parameter and not only an atom.

Now that we are considering the belief base of the agent as a Dynamic Logic
Program, we will be able to update the belief base with a Generalized Logic
Program. As in 3APL, the agent uses mental actions to update its belief base,
but we will now consider the postcondition of these actions to be a Generalized
Logic Program.

Definition 6 (Modified Mental Actions Specifications). Let αM be a
modified mental action name, βM ∈ LM

B be the precondition of the action and
P a GLP. Then, a modified mental action is a tuple 〈β, αM , P 〉, and ModAct is
the set of all modified mental actions.

〈B(tv on), turn off, {not tv on ←}〉 is an example of a modified mental action
representing the action of turning off the tv. Throughout this paper, we will
explore the possibilities of using theses type of actions and give many other
examples of application.

In a similar way, we modify the syntax of the communication actions by
considering that the message in these actions are GLPs.

Definition 7 (Modified Communication Actions Specifications). Let s
be an agent name, type a performative or speech act and P a GLP. Then, a
modified communication action is defined as Send (s, type, P), and ComAct as
the set of all modified communication actions.

Send (user, inform, {not power failure ←}) is an example of the modified com-
munication action informing the user agent that the power failure ended.

4 Modified Semantics

In this Section, we define the semantics of the modified system, beginning with
the semantics of the belief query formulas and afterwards of the modified mental
and communication actions.

4.1 Modified Belief Query Semantics

The semantics of the Belief Queries will depend on the type of approach the
agents adopt to handle the multiple stable models of a DLP. As we discussed
previously, we consider three approaches: Skeptical (|=∩), Credulous (|=∪) and
Casuistic (|=Ω). The consequences of choosing anyone of theses approaches are

174 V. Nigam and J. Leite

not completely clear. More investigation will be needed to determine exactly in
what conditions would be more suitable to select one of them, and therefore, we
leave the belief query semantics conditioned to the approach used to determine
the valuation of the agent’s belief base.

Definition 8 (Semantics of Modified Belief Queries). Let B(φ), βM , β′
M

∈ LM
B be belief query formulas, 〈σ, γ, Π〉 be a modified agent configuration and

x ∈ {∩,∪, Ω} . Then, the semantics of belief query formulas, |=B, is defined as
follows:

〈σ, γ, Π〉 |=B �
〈σ, γ, Π〉 |=B B(φ) ⇔ σ |=x φ

〈σ, γ, Π〉 |=B βM ∧ β′
M ⇔ 〈σ, γ, Π, Ω〉 |=B βM and 〈σ, γ, Π, Ω〉 |=B β′

M

〈σ, γ, Π〉 |=B βM ∨ β′
M ⇔ 〈σ, γ, Π, Ω〉 |=B βM or 〈σ, γ, Π, Ω〉 |=B β′

M

We don’t feel the need to include in the belief query language the negation
of belief literals,¬B (φ), since with the definition above, the programmer has
the possibility of using the open the closed world assumptions by using query
formulas of the type B (¬φ) and B (not φ), respectively. Consider the following
illustrative example:

Example 2. Let the belief base of an agent consist of the following facts:

{p(a) ← p(b) ←}
If in the original 3APL, we propose the query ¬B (p (c)) it will succeed, since it

is not possible to unify p(c) with any of the given facts, and the negation by finite
failure will succeed. Hence, the 3APL agents use the closed world assumption.

This query could be done in a similar way in the modified 3APL, by using
the modified belief query B (not p (c)). As the program above has an unique
stable model, namely {p(a), p(b)}, it would represent the beliefs of the agent.
Reminding the definition of the entailment of the default negation: if φ /∈ M then
M |= not φ. The modified belief query will also succeed, since p(c) /∈ {p(a), p(b)}.
4.2 Semantics of Action Execution

In this subsection we formalize the semantics of the actions in this modification
of 3APL.

We start with a definition that formalizes the semantics of the Modified Men-
tal Actions. Informally, if the precondition (βM) of the modified mental action
(αM) is satisfied by the agent configuration, the belief base of the agent will
be updated with the program (P) in the postcondition of the action. Syntacti-
cally, this update adds a new program at the end of the sequence of programs,
that composes the Belief Base. We then use the semantics of Dynamic Logic
Programming to characterize this updates.

Definition 9 (Semantics of Modified Mental Actions). Let 〈βM , αM , P 〉,
〈σ, γ, Π〉, be, respectively, a modified mental action and modified agent

Adding Knowledge Updates to 3APL 175

configuration, x ∈ {∩,∪, Ω}, and κ ∈ LG The semantics of the modified mental
action is given by the transition rule:

〈σ, γ, {(αM , κ)}〉 |=B βM

〈σ, γ, {(αM , κ)}〉 → 〈(σ, P), γ′, {(ε, κ)}〉

where γ′ = γ \ {Σ | Σ ⊆ K ∧ (σ, P) |=x Σ}.

This modification in the definition of Mental Action greatly increases the ex-
pressiveness of the language. Now the agent can use generalized logic programs
instead of simple facts to update the belief base. Furthermore, the semantics of
DLPs gives us an intuitive solution for the conflicting cases, by automatically
rejecting older rules if they are conflicting with a newer ones.

For example, consider again the situation explained in the Introduction, where
the agent has a belief base consisting of the program:

mother said(santa claus) ←
believe(santa claus) ← mother said(santa claus)

And after a mental action it would have to conclude that believe(santa claus) is
no longer true. This can be easily done by updating the belief base with the pro-
gram {not believe(santa claus) ←}. Then, the DLP semantics will reject the rule
believe(santa claus) ← mother said(santa claus) and the agent will no longer
believe in believe(santa claus) but still believe in mother said(santa claus).

Even though we believe that the semantics of DLP can handle most of the
conflicting cases in an elegant manner, there are some cases that require program
revision. Note that revision and updates are two different forms of belief change
[13]. To achieve both forms of belief change, would be necessary to include a
mechanism that would make it possible for the programmer to customize the
revision of the programs, for example, by programming the deliberation cycle.
We will not approach this issue in this paper.

The final modification that we propose for the 3APL actions concerns the
communication actions. In 3APL the agent uses communication actions to send
messages to other agents in the system. Up to now the messages that the agents
transmit are positive facts. Since our agents have the possibility to update their
beliefs with GLPs, it makes sense to use this added expressiveness and allow
GLPs to be exchanged between the agents. Accordingly, in this proposal, the
agents will exchange messages containing Generalized Logic Programs.

In a similar way as done in 3APL, after performing a communication action
(Send(r, type, P)), the sending agent (s) will update its belief base with the
program {sent(r, type, P) ←} and the receiving agent (r) updates its belief base
with the program {received(r, type, P) ←}4.

By combining modified communication and mental actions, agents are now
able to update their belief base with knowledge that they receive. Normally, an

4 Programs can be associated with identifiers to be used when the facts sent(.) or
received(.) are added in the belief base to represent these programs.

176 V. Nigam and J. Leite

agent has a social point of view about the other agents in the environment, and
may consider the information passed by another trustworthy agent to be true.
For example, it is usually the case that a son believes what his father tells him.
This could be represented using the following modified mental action:

〈{B(received(father, command, P)) ∧ B(obey(father))}, obey father, {P}〉

where the agent would update its belief base with the program P , if it believes
that it should obey his father and that it received from his father a command
containing the message P .

5 Properties of the Modified 3APL

In this Section, we elaborate on the features provided by the modification of the
3APL system proposed in this paper.

Evolving Knowledge Bases - By adopting their belief bases as Dynamic Logic
Programs and using its semantics to solve the possible conflicts when updating its
beliefs, 3APL agents can have evolving belief bases. This dynamic character of its
knowledge base opens the possibility of performing more complex updates using
generalized logic programs instead of adding or removing facts. Agents with this
modification can learn new rules even though they partially conflict with previous
knowledge. For example, an agent may consider that all the published papers are
good, represented by the GLP {papers good(X) ←}. Then, it learns that not all
papers are good because the ones published in poor venues are not so good, hence
updates its beliefs with the program {not papers good(X) ← bad congress(X)}.
Notice that if the agent doesn’t believe the paper X is from a bad congress it will
use the previous knowledge and consider the paper as good. However if it believes
that the paper X comes from a bad congress the newer rule will reject the older
one. More about evolving knowledge bases can be found in [14];

The next proposition states that in fact, all DLPs can be semantically repre-
sented by an agent in the modified 3APL.

Proposition 1. Let P be a DLP, x ∈ {∩,∪, Ω} and 〈P , γ, Π〉 be a modified
agent configuration. Then:

(∀L ∈ L¬,not).(P |=x L ⇔ 〈P , γ, Π〉 |=x B(L))

Proof: Trivial from the definition of the modified belief queries.

Strong and Default Negation - Agents in 3APL treat negation as negation by
failure. In the modification proposed in this paper, we increase considerably the
expressiveness of the agents by introducing strong as well as the default nega-
tion. This allows the agents to reason with a closed or open world assumption.

Adding Knowledge Updates to 3APL 177

Consider the classical car - train cross example, where the car wants to cross
the rails but it must be sure that a train is not coming. We can use the following
two modified mental actions to model this situation:

〈{B(¬train)}, cross, {crossed ←}〉
〈{B(not train) ∧ B(not¬train)}, listen, {¬train ← ¬sound}〉

The first action is of passing the cross when the agent is sure that there is no
train coming (¬train). While the second action illustrates the use of the default
negation to represent doubt, since the agent will listen when it doesn’t know for
sure if the train is coming (not train) or not coming (not¬train). This situation
was not possible to be modeled in the original 3APL.

From [15], we know that Dynamic Logic Programming is a generalization
of Answer Set Programming. Together with the proposition 1, we obtain the
following corollary stating that in fact, the agent belief semantics in the modified
architecture also generalizes Answer Set Programming.

Corollary 1. Let P be an ASP, x ∈ {∩,∪, Ω}, and 〈(P), γ, Π〉 be a modified
agent configuration. Then:

(∀L ∈ L¬,not).(P |=x L ⇔ 〈(P), γ, Π〉 |=x B(L))

More Expressive Communications - Agents in 3APL communicate through
messages containing only facts. By proposing agents that can communicate pro-
grams to other agents, we increasing the possibilities of the multi-agent system.
Agents can share knowledge represented by rules. Furthermore, depending on
the semantics of the exchanged programs, they could also represent plans or
explanations about the environment [4]. As discussed in the previous sections,
the agents could update their belief base with theses programs;

Nondeterministic Effect of Actions - As discussed in [3], we can use the
multiple stable models of a Generalized Logic Program to represent nondeter-
ministic effects of mental actions. Consider the mental action representing the
action of shooting in the famous Yale shooting problem, where the agent tries to
kill a turkey with a shot gun, but after shooting, it can happen that the agent
misses the turkey:

〈B (shoot) , shoot, {kill turkey ← not miss; miss ← not kill turkey}〉 ;

There are two possible effects for the action shoot, one if the agent shot the
turkey and therefore killed it and another where the agent missed and the turkey
is presumably alive.

NP-Complete Complexity - To have the increase in the expressiveness of
the language, as investigated in the points above, there is an increase in the
complexity of the agent. According to [15] the complexity of computing the
stable models is NP-Complete.

178 V. Nigam and J. Leite

6 Example

In this Section, we give an example that could be straightforwardly implemented
in our modified 3APL system.

Consider the scenario, where 007 is in one of his mission for the MI6, to save
the world. After infiltrating the enemy base, our special agent encounters the
control room where it is possible to deactivate the missile that is threatening
to destroy the world as we know it. However, since he was meeting one of the
bond girls for dinner, he didn’t attend the classes of Mr. Q on how to deactivate
bombs.

We can represent his belief base as follows:
{

save world ← ¬bomb
}

At this point the agent is not able to save the world, since the program has one
stable model, namely ∅. But our agent remembers the briefing of Mr. Q before
this mission, when Mr. Q explained about a special device installed in his watch
that could be used to contact the MI6 headquarters. He immediately takes a look
at his watch, presses the special button installed, and asks for further instruc-
tions, represented by the communication action, Send(MI6, request, {help ←}).
The MI6 headquarters, unable to find Mr. Q, sends him some instructions that
could be an incorrect one, represented by the following program, PMI6:

PMI6 :
{

know deactivate ← not wrong instructions
wrong instructions ← not know deactivate

}

Since 007 trusts MI6, he updates its beliefs with the modified mental action:

〈B (received (MI6, inform, PMI6)) , listen, PMI6〉 ;

With this update, the agent’s belief base supports two stable models:

{wrong instructions, received(MI6, inform, PMI6} and
{know deactivate,¬bomb, save world, received(MI6, inform, PMI6}

Notice that the agent must handle the multiple stable models. We consider
that for the task of saving the world a more conservative approach should be
used, namely a Skeptical one (where the intersection of all the models is used to
determine the agent’s beliefs).

Now the spy has to acquire more information about the bomb, since he is not
sure if it is possible to deactivate the bomb with the instructions given. If he tries
to disable the bomb with the acquired information there can be two outcomes,
that the bomb is disabled or that the missile is launched. Represented by the
following modified mental action:

〈B (not know deactivate) , disable with risk, Pdisable〉
where:

Pdisable :
{¬bomb ← not missile launched

missile launched ← not¬bomb

}

Adding Knowledge Updates to 3APL 179

Therefore, he takes a look at the room (sensing action)5, and finds the manual
of the bomb and realizes that the instructions given were not wrong, updating
once more his beliefs with the program:

{
not wrong instructions ←}

With this new knowledge the spy is able to conclude that he knows how to
deactivate the bomb (know deactivate), and therefore he is able to disable the
bomb (¬bomb), using the following modified mental action:

〈B (know deactivate) , disable without risk, {¬bomb ←}〉
After this action, 007 has safely deactivated the bomb (¬bomb) and finally

saved the world (save world) once more (to follow precisely the 007 movies it
would be necessary to include somewhere at the end a bond girl...).

In this example we were able to demonstrate several aspects that can be
used in the modified 3APL proposed here. First, the use of the strong nega-
tion (¬bomb), since it could be incorrect to conclude that the spy saved the
world if we used instead default negation (not bomb), because there would still
be a chance that the bomb is activated but the agent doesn’t know it. Sec-
ond, it was possible to send rules in the communication actions (when the MI6
headquarters sends 007 the instructions) instead of simple facts. Third, if the
agent tried to disable the bomb without the assurance that the information
given is correct, there would be a nondeterministic effect after performing the
disable with risk action (bomb being disabled or launching the missile). Fi-
nally, we could demonstrate the knowledge evolution, when the agent senses
that the instructions were right (not wrong instructions ←), the previous rule
(wrong instructions ← not know deactivate) is rejected and it is finally possible
for the agent to save the world (save world).

7 Conclusions

In this paper we proposed a modification to the syntax and semantics of the
3APL language. We investigated the main properties that are obtained by hav-
ing an agent with a belief base represented by Dynamic Logic Program. The
modification proposed considerably increases the expressiveness of the language,
by allowing knowledge updates, strong and default negation, more expressive com-
munication between the agents. However, to be able to have this expressiveness,
there is a clear increase in the complexity of the system.

We investigate in [21], the properties obtained by representing the agent’s goal
base by a DLP. The agent programmer can elegantly adopt, drop goals, as well
as represent achievement and maintenance goals. We believe that there would
5 Notice that we did not deal in this paper with sensing actions, i.e., external actions in

the 3APL. However, as the environment is considered as a set of facts, these type of
action can be straightforwardly incorporated in our system by updating the agent’s
beliefs with the sensing information.

180 V. Nigam and J. Leite

be much synergy, if the approaches used here and the approaches in [21] were
joined in an unique agent framework.

Even though we believe that the semantics of DLP can handle most of the
conflicting cases in an elegant manner, there are some cases that require program
revision. It would necessary to include a mechanism that would make it possible
for the programmer to customize the revision of the programs, for example, by
programming the deliberation cycle.

[17] presents a way to represent the social point of view of agents using Multi
Dimensional Dynamic Logic Programs (MDLP). Further research could be made
to try to incorporate these social point views in the 3APL agents, and use this
view to decide to consider information sent by another agent or to decide the
goals of an agent. A mechanism to update the MDLP would have to be defined,
possibly in a similar line as KABUL [14] or MLUPS [16].

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle
for semantics of dynamic logic programming. Studia Logica, 79(1):7–32, 2005.

2. J. J. Alferes, J. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45(1-3):43–70, 2000.

3. C. Baral. Reasoning about actions: Non-deterministic effects, constraints, and
qualification. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, IJCAI 95, Montral, Qubec, Canada, August 20-25 1995,
volume 2, pages 2017–2026. Morgan Kaufmann, 1995.

4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

5. R. Bordini, J. Hübner, and R. Vieira. Jason and the Golden Fleece of agent-oriented
programming. In Bordini et al. [6], chapter 1.

6. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications. Number 15 in Mul-
tiagent Systems, Artificial Societies, and Simulated Organizations. Springer, 2005.

7. R.H. Bordini, L. Braubach, M. Dastani, A. El F. Seghrouchni, J.J. Gomez-Sanz,
J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A survey of programming languages
and platforms for multi-agent systems. Informatica, 30(1):33–44, 2006.

8. S. Constantini and A. Tocchio. A logic programming language for multi-agent
systems. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Logics in Artificial
Intelligence, European Conference, JELIA 2002, Cosenza, Italy, September, 23-
26, Proceedings, volume 2424 of Lecture Notes in Computer Science, pages 1–13.
Springer, 2002.

9. M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-
agent systems in 3APL. In Multi-Agent Programming: Languages, Platforms and
Applications, volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, chapter 2. Springer, 2005.

10. J. Dix and Y. Zhang. IMPACT: a multi-agent framework with declarative seman-
tics. In Bordini et al. [6], chapter 3.

11. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren
and Szeredi, editors, 7th International Conference on Logic Programming, pages
579–597. MIT Press, 1990.

Adding Knowledge Updates to 3APL 181

12. K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming in 3apl. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

13. H. Katsuno and A. O. Mendelzon. On the difference between updating a knowledge
base and revising it. In J. A. Allen, R. Fikes, and E. Sandewall, editors, Proceedings
of the 2nd International Conference on Principles of Knowledge Representation and
Reasoning (KR’91)., pages 387–394. Morgan Kaufmann, 1991.

14. J. Leite. Evolving Knowledge Bases. IOS press, 2003.
15. J. Leite. On some differences between semantics of logic program updates. In

C. Lemâıtre, C. A. Reyes, and J. A. González, editors, Advances in Artificial Intel-
ligence - IBERAMIA 2004, 9th Ibero-American Conference on AI, Puebla, México,
November 22-26, 2004, Proceedings, volume 3315 of Lecture Notes in Computer
Science, pages 375–385. Springer, 2004.

16. J. Leite, J. J. A., L. M. Pereira, H. Przymusinska, and T. Przymusinski. A language
for multi-dimensional updates. In J. Dix, J. A. Leite, and K. Satoh, editors, Com-
putational Logic in Multi-Agent Systems: 3rd International Workshop, CLIMA’02,
Copenhagen, Denmark, August 1, 2002, Pre-Proceedings, volume 93 of Datalogiske
Skrifter, pages 19–34. Roskilde University, 2002.

17. J. Leite, J. J. Alferes, and L. M. Pereira. On the use of multi-dimensional dy-
namic logic programming to represent societal agents’ viewpoints. In P. Brazdil
and A. Jorge, editors, Progress in Artificial Intelligence, Knowledge Extraction,
Multi-agent Systems, Logic Programming and Constraint Solving, 10th Portuguese
Conference on Artificial Intelligence, EPIA 2001, Porto, Portugal, December 17-
20, 2001, Proceedings, volume 2258 of Lecture Notes in Computer Science, pages
276–289. Springer, 2001.

18. J. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming
agent architecture. In Intelligent Agents VIII, volume 2333 of LNAI. Springer,
2002.

19. J. Leite and L. M. Pereira. Generalizing updates: From models to programs. In
J. Dix, L. M. Pereira, and T. C. Przymusinski, editors, Logic Programming and
Knowledge Representation, Third International Workshop, LPKR ’97, Port Jeffer-
son, New York, USA, October 17, 1997, Selected Papers, volume 1471 of Lecture
Notes in Computer Science, pages 224–246. Springer, 1998.

20. V. Mascardi, M. Martelli, and L. Sterling. Logic-based specification languages for
intelligent software agents. Theory and Practice of Logic Programming, 4(4), 2004.

21. V. Nigam and J. Leite. Using dynamic logic programming to obtain agents with
declarative goals. In M. Baldoni and U. Endriss, editors, Pre-Procs. of the 4th Inter-
national Workshop on Declarative Agent Languages and Technologies, (DALT06),
Hakodate, Japan, 2006, 2006.

22. M. Thielscher. Reasoning Robots: The Art and Science of Programming Robotic
Agents. Springer, 2005.

Part III

Validation of BDI Agents

Jan Sudeikat1,2, Lars Braubach1, Alexander Pokahr1, Winfried Lamersdorf1,
and Wolfgang Renz2

1 Distributed Systems and Information Systems,
Computer Science Department, University of Hamburg,

Vogt–Kölln–Str. 30, 22527 Hamburg, Germany
Tel.: +49-40-42883-2091

{4sudeika,braubach,pokahr,lamersd}@informatik.uni-hamburg.de
2 Multimedia Systems Laboratory,

Department of Information and Electrical Engineering
Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

Tel.: +49-40-42875-8304
{sudeikat,wr}@informatik.haw-hamburg.de

Abstract. Testing and Debugging multi-agent systems (MAS) - which
are inherently concurrent and distributed – is a challenging task.
While complex application scenarios demand intelligent entities with
autonomous reasoning capabilities, the applied reasoning mechanisms
impair current approaches to validate MAS implementations. Reactive
planning systems, namely the well-known Belief Desire Intention (BDI)
architecture, have been successfully applied to implement these intelli-
gent entities by means of goal directed agents. Despite testing and de-
bugging, used to validate whether implementations behave as intended,
are crucial to serious development efforts, only minor attention has been
payed to corresponding tool support and testing procedures for BDI–
based MAS. In this paper, we examine how the reasoning mechanism
inside agent implementations can be checked and how static analysis of
agent declarations can be used to visualize and check the overall com-
munication structure in closed MAS. We present corresponding tool sup-
port, which relies on the definition of crosscutting concerns in BDI agents
and enables both approaches to the Jadex Agent Platform.

1 Introduction

Agent-orientation proposes autonomous, proactive entities, so-called agents [1],
as an atomic design and development metaphor for software systems. These en-
tities enable a lifelike decomposition of software systems as independent actors,
interacting with each other. Besides simple reactive agents [2] have been suc-
cessfully applied in various application domains, the BDI architecture has been
established to develop deliberative agents [3,4]. Methodologies and development
tools are in active development to support the construction of software systems,
utilizing this specific architecture. Implementations of this model use the con-
crete concepts of beliefs, goals and plans, to design and implement individual

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 185–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

186 J. Sudeikat et al.

agents [5,6]. Beliefs denote the local knowledge of individual agents, goals de-
scribe the agents objectives and plans are the executable means by which agents
achieve their goals. These concepts allow agents to reason pro–actively about
which actions to take, i. e. plans to execute.

The autonomous nature of these entities, their complex interactions and their
individual memory and reasoning capabilities introduce unprecedented levels of
uncertainty [7] to these software systems. While traditional development ap-
proaches design the single flow of control in a software system, the individual
agent knowledge and reasoning capabilities may lead to unexpected individual
behaviors, inhibiting predictions of agent actions and interactions.

Testing and debugging are of equal importance to the efficient development
of functionally correct agent systems. While testing (or validation in general) is
a more or less systematic approach of discovering unknown bugs, debugging is
the process of tracking down and finally removing an already known bug. Much
work in the MAS area has been devoted solely to debugging (see e.g. [8,9,10]).
This paper discusses approaches, which address validation issues, focusing on
approaches for BDI-based agents. Concretely, we present how assertions can be
used in BDI concepts to support these activities for BDI agents. In addition, we
examine how agent declarations can be used to analyse structural properties of
MAS communication and internal agent processing.

This paper is structured as follows. In the coming section we review the BDI
architecture. In section 3 testing and validation approaches to MAS are exam-
ined and current approaches, particularly concerned with BDI architectures, are
discussed. The following section 4 presents our approaches to validate agent im-
plementations. We introduce a mechanism to execute assertions on BDI concepts
and two static analysis approaches. After exemplifying their usage and imple-
mentation for the Jadex system (section 5), we conclude and give prospects for
future work.

2 The BDI Agent Architecture

A successful architecture to develop deliberative agents is the BDI model. Brat-
man [3] developed a theory of human practical reasoning, which describes ratio-
nal behavior by the notions Belief, Desire and Intention. Implementations of this
model replaced the latter two by the concrete concepts goals and plans, leading
to a formal theory and an executable model [4,11].

Beliefs represent the local information of agents about both the environment
and its internal state. The structure of the beliefs defines a domain–dependent
abstraction of the actual environment. It can be regarded as the view point of
an agent towards its surrounding. The goals represent agents’ desires, which
are commonly expressed by certain target states inside the beliefs. This general
concept enables pro–active agent behaviors. Agents carry out these goals on
their own (see [12] for a discussion of goals in BDI systems). Finally, plans are
the executable means by which agents achieve their goals. Agents can access a
library of plans and deliberate which plans to execute, in order to reach a desired

Validation of BDI Agents 187

target. This mechanism is also known as reactive planning, since the precompiled
plans are developed at design time. Single plans are not just a sequence of basic
actions, but may also dispatch sub-goals.

Both reactive and pro–active behaviors are enabled by internal reasoning pro-
cesses, composed of goal deliberation [13] and meta-level reasoning (problems
of this are discussed in [14]). The former is the process to select goals to be
pursued by an agent, while the latter is responsible to select plans for execution
in order to satisfy the previously selected goals. To allow appropriate reasoning,
the goals and plans are annotated with conditions that describe constraints on
their applicability.

3 Validating Multi–agent Systems

In [15] evaluation activities for complex, possibly adaptive and/or distributed
software systems have been classified with respect to the amount of expertise
required for their application by developers (cf. figure 1). Testing refers to the

Fig. 1. Categories of evaluation Techniques according to [15]

generation of output by predefined input sequences and comparison of the ac-
tual output with expected values. Run–time monitoring observes the run–time
behavior of software artifacts under given conditions, enabling further analysis.
Static analysis solely examines the structure of source codes, while Model Check-
ing examines all reachable program states in order to verify specifications. In the
end, Theorem Proving enables formal proofs of correctness (these approaches are
extensively discussed wrt. AOSE in [16]). Both Model Checking and Theorem
Proving provide most confidence in source codes but require high cost in specifi-
cation effort and computation as well. While ongoing research [15] is enhancing
their applicability, these requirements often impair their application in commer-
cial development settings. These mainly rely on monitoring, static analysis and
testing.

We focus here on testing and static analysis, while we address monitoring of
BDI agents in [17]. For a generic overview of validating multi–agent systems,

188 J. Sudeikat et al.

we first focus on communicative aspects (section 3.1), as these can be addressed
without considering a specific internal agent architecture. Then we narrow our
focus to the peculiarities of the BDI model. We propose a comprehensive vali-
dation process that addresses individual as well as multi-agent levels, and give
a short review of existing work (section 3.2).

3.1 Validating Agent Communication

The communication between agents is an inherent and foundational property of
MAS while the exchanged messages are clearly defined artifacts to be recorded
and analysed. As one aspect of communication several approaches exist [18,19]
that aim at validating the message exchanges of agents according to the un-
derlying interaction protocols. Interaction protocols are task-specific means to
determine strictly all allowable message flows in MAS. Even though it is gener-
ally not feasible to verify the accordance to protocols at design time, effective
runtime monitoring support can be devised. Typically, runtime monitoring is
performed by a tool that observes the message exchanges of agents and engage
in actions (e.g. report an error to the application developer) when violations of
protocols have been detected.

Additionally, protocol validation message exchanges in a MAS can also be
used for analysis and debugging purposes. On the one hand, a visualization of
the messages in the system can help to find bugs as irregularities, as agents
consuming but not sending messages can be easily identified. On the other hand
data mining techniques can be applied to reveal unknown system properties and
cluster large amounts of message data in a systematic way [20].

3.2 Validating BDI Concepts

A vision of a comprehensive validation strategy for BDI agents is outlined in
figure 2. The validation procedure should move from (1) basic functional modules
to (2) the composition of these in individual agents and finally considering the
interplay of multiple agents (3) among each other and (4) between the MAS
and a surrounding IT infrastructure. Approaches to validate the interplay of the
agents commonly do not depend on the internal agent architecture. Therefore,
it is expected that approaches as presented in section 3.1 can be used to validate
BDI agents as well as non-BDI agents.

Current approaches to validate BDI agents are concerned with (1) the com-
pliance of agent execution to design artifacts drawn from development method-
ologies [18], (2) the comprehension of agent behaviors by comparing models of
the expected order of reasoning events [21,22] and (3) test case generation for
BDI–plans, based on coverage criteria [23].

While Padgham et al. use design artifacts from the Prometheus methodol-
ogy [24] mainly for validation of communication protocols [25,18] and agent
communication [26], they also define and test for coverage and overlap of BDI
plans. BDI reasoning events have full coverage when the event is expected to

Validation of BDI Agents 189

Fig. 2. Typical testing stages for a MAS. The System is developed from single func-
tionalities to an integrated solution which interfaces 3rd party software packages.

have an applicable plan under any condition and overlap describes that multiple
plans may be applicable to handle an event. In [18] these criteria are validated
by automated introduction of logging code to monitor plan adoption.

In [22] Lam et al. propose a method and a tool for comprehending and ex-
plaining agent behavior. In principle, the method is an extension to the runtime
monitoring of message exchanges, by considering internal reasoning activities of
the agents as well. All these behavioural data is collected at runtime in a knowl-
edge base and can be used for interpretation purposes e.g. to understand why
an agent has executed a specific action. The tool – Tracer – also allows to view
the order of reasoning events in graph structures, facilitating error detection by
exploiting pattern recognition.

In [23] an automatic BDI test-case generation method has been proposed. The
method is able to create test cases in accordance with coverage criteria. These
coverage criteria are plan as well as node (plan statement) based and ensure
that test cases for all relevant execution paths of the agent will be generated.
A platform independent prototype tool – BDITester – implements the concepts
and can be used to produce a set of test cases. Even though the tool includes
a mechanism to calculate and reduce the necessary number of test cases, it
remains unclear if the approach scales up for complex systems and if domain
related errors can be detected.

4 A Practical Approach to the Validation of BDI
Reasoning

In the case of BDI agents in general, proper functioning is based on the processed
BDI concepts. These comprise (1) belief consistency, (2) proper goal adoption
and consistency and finally (3) correct plan execution. Agent developers declare
the BDI concepts and annotate conditions to their applicability in order to define
the behavior of the goal directed agents. Since these agents reason pro–actively

190 J. Sudeikat et al.

about their goal and plan adoption, verification of agent reasoning mechanisms is
crucial and challenging. While functional properties only ensure that subsequent
agent actions are executed properly, a comprehensive testing procedure needs to
assure that agents will come to the intended conclusions, i. e. adopt appropriate
goals and plans.

In order to address these issues on BDI agent validation, we present a novel
testing and validation approach for BDI agents. It comprises two parts: To test
agents and identify misconceptions in agent code, we propose the contributive
execution of assertion statements, triggered by BDI reasoning events. Secondly,
we discuss how a static analysis of BDI agent declarations can improve the
consistency of agent specifications and multi-agent interplay.

4.1 Assertions in BDI-Concepts

Assertions are typically provided as extensions to programming languages1. After
we briefly introduce assertions in general, we classify which properties in BDI
reasoning can be validated by using them in BDI agents.

Assertions in Software Engineering. Following Hoare [27], an assertion is:

”... a Boolean formula written in the text of a program, at a place where
its evaluation will always be true or at least, that is the intention of the
programmer...”

If an assertion statement evaluates to false, the program has entered an incon-
sistent state. Assertions have their origin in program verification [28] and can be
traced back to the founding works of Turing [29], who introduced this concept
to specify interfaces between parts of programs. Despite their age, assertions
are widely used in the software industry. The design by contract principle [30] is
closely related to object–oriented development and assertions lend themselves to
detect, diagnose and classify violations of these contracts specified as pre– and
post–conditions (e.g. in the Eiffel programming language).

Defects in programs can only be identified when testing efforts lead to observ-
able incorrect output. This observability of software artifacts requires that (1) an
input causes a defective code to be executed, (2) program data gets corrupted
and finally (3) this corrupted data is propagated to an incorrect output [31].
Components are usually tested using unit–test2 frameworks, which facilitate in-
stantiation, automated method calls and comparison of return values to expected
output. Though these tests can usually be used to examine corrupted object
states, encapsulation and information hiding may mask errors in integration
and system–level tests, which are used to examine the interplay of components
and subsystems. To complete testing approaches, assertions have been proposed
to increase the probability that incorrect outputs occur when erroneous code is
executed [31].

1 e. g. introduced to Java in version 1.4.
2 e. g. http://www.junit.org

Validation of BDI Agents 191

Application of Assertions in BDI Concepts. As described in section 3.2,
the validation of the BDI–based reasoning process is a major challenge in testing
and debugging BDI agents. While only message exchange and external agent
actions are observable on the MAS level, it is necessary for developers to be
confident that the intended goals and plans are adopted during agent execution.
While encapsulation and information hiding may be detrimental to state–error
propagation in object–oriented systems, the same is true for the event–based
and condition centric reasoning cycles in BDI agents.

In this respect assertions can be used to (1) specify and ensure the relations
between BDI concepts and the surrounding agent as well as, (2) invariant prop-
erties in agent/MAS execution. Whereas the conditions which are annotated
to BDI goals and plans enable automated reasoning, developers intend specific
agent configurations and behaviors. Assertions can be used to annotate explicit
specifications of the intended context, e. g. agent configurations, to BDI con-
cepts. These annotations supplement concept properties by automated notifica-
tion of violations to increase the observability of unintended and/or inconsistent
agent states. According to the well established design by contract principle [30]
in object–oriented systems, similar contracts – between agent states and BDI
concepts – can be specified on the BDI–concept level. In opposition to program-
ming language assertions, execution of BDI–based assertions is triggered by BDI
reasoning events. The statements are used to ensure that BDI events occure in
intended agent configurations.

As there is no general consensus how the BDI concepts should be represented
at the implementation level, different kinds of representations may require dif-
ferent kinds of assertions. For beliefs at least two different representational forms
have been used. Logic based representations such as first order predicate logic
could e.g. use assertions about which facts are allowed/prohibited to be contained
in the beliefbase and also which relationships may occur. When relational and
object-oriented representations are employed assertions could e.g. be used to
restrict the allowed belief values (define the domains).

The same representational variety applies for goals which range from purely
procedural goal events to strictly declaratively specified goals. In general holds,
that the more information about a goal can be supplied the more data is avail-
able for assertion evaluation. One interesting aspect for testing concerns the
creation of goals if this aspect is covered by the concrete architecture. Invariants
may be specified by assertions in order to highlight when unintended goals are
instantiated in specific agent states.

The most conceptual similarity among BDI concepts exists in the area of
plans. Even though there is no standard way how and in which language a plan
body should be realized, the key elements of plan heads are generally accepted
(although alternative terms for the same element exist). This allows to defer
generic properties that can be used to validate plan reasoning. Most notably,
the coverage and overlap criteria, have been proposed by [26] to allow runtime
monitoring of event resp. goal processing. Assertions could be used to capture
the semantics of coverage and overlap criteria (cf. section 3.2).

192 J. Sudeikat et al.

The annotated conditions also provide additional documentation for the agent
code. In section 5 we present an implementations that executes assertions at
every state change of the annotated element. Developers need to be aware of
drawbacks. While the execution of assert–statements is intrusive to the agent
execution, extensive processing in these statements will slow down the agents
and side effects in assertion statements may impair proper agent execution.

4.2 Static Analysis

BDI–based MAS are composed of a set of agent declarations which define the
properties of BDI concepts and further implementation dependent details.
Figure 3 gives a canonical overview of such a MAS, composed of n agent types.
The declared agent properties comprise the messages to be sent and received as
well as internal events which may trigger plan execution (e. g. found in [4,32,33]).
The consistency of declarations of these important implementation concepts can
be checked in order to validate structural properties and highlight misconceptions.

The Static Structure of Internal–Events. Internal events typically trigger
plan adoption as a mean of intra–agent communication (cf. figure 3). Therefore,
proper specification of these events and their triggering function can be analysed
by iteration and comparison of event declarations. As these events can also
be directly handled in plans, one has to require that developers declare this
behavior, e. g. via meta data in plan implementations, in order to validate that
all specified events actually trigger plans and vice versa all triggers are correctly
declared.

Static Analysis of Message–Events. As outlined in figure 3 agent dec-
larations comprise the messages to be sent and received. Therefore a set of
agent declarations can be understood as a graph G, which is defined as a tuple
G = 〈A, M, Ae, Me〉, where A denotes a set of agents, M a set of messages and
Ae a set of edges between agents and messages (Ae ⊆ A×M) and finally Me de-
notes a set of edges between sent and received messages (Me ⊆ M × M). Since
message declarations comprise implementation details (e. g. FIPA3 compliant
performatives, utilized ontologies, etc.) used to control sending and reception,
the edges between messages (Me) describe matching pairs of sent and received
messages ((m, m′) ∈ Me ⇔ m, m′ ∈ M)4. Identification of these is therefore
dependent on the applied agent platform. In order to identify design flaws we
expect that all messages (m) declared in one agent (a) can be sent/received (m′)
by at least one other agent (a′) in a MAS:

∀(a, m) ∈ Ae. ∃(a′, m′) ∈ Ae ∧ (((m, m′) ∨ (m′, m)) ∈ Me)

3 http://www.fipa.org/
4 When messages are declared globally, e. g. in the JACK agent platform [32], Me

becomes the identity relation.

Validation of BDI Agents 193

Fig. 3. A canonical view on a Jadex–MAS. One to n agent types are declared. Among
the properties of BDI concepts and implementation details, Internal and Message
Events are specified. Only matching message events, e. g. A and Ā, enable commu-
nication.

Message–based communication is an essential property of MAS, that can be
represented in a gaph structure, suitable to verify static MAS properties. We
expect that agent declarations in other agent platforms and design methodologies
can be exploited to define similar graph structures, describing possible message
exchanges as well as other MAS properties, e. g. shared resources or offered
services.

5 A Case Study – The Marsworld in Jadex

To exemplify the usage of the above described testing and analysis tools, we ex-
amine an example MAS from the Jadex–Project. This example scenario has been
inspired by a case study in [34], where hierarchical structures of static, predefined
roles are examined. In order to allow for cooperative behavior, the system has
been generalized as follows. The objective for a group of robots (agents) in the
so–called Marsworld, is to mine ore on a far distant planet. The mining process
is composed of (1) locating the ore, (2) mining it on the planets surface and (3)
transporting the mined ore to the home base. Therefore, a collection of three dis-
tinct types of agents are released from a home base to a bounded environment.
All of them have a sensor range to detect occurrences of ore in the soil and start
immediately a searching behavior. Sensed occurrences of ore are reported to the
so-called sentry-agent. This robot is equipped with a wider sensor range and
can verify, whether a suspicious spot actually accommodates ore or not. When
ore is found, the location is forwarded to a randomly selected production-agent,

194 J. Sudeikat et al.

equipped with a dedicated mining device. After mining is finished, a group of
carry-agents is ordered to transport ore to the home base. When the ordered
actions have been performed agents continue searching. Details on the dynamics
of this MAS can be found in [17].

5.1 Validation Support for the Jadex System

The Jadex reasoning engine [33,35] provides an execution environment for BDI-
style agents on top of arbitrary distributed systems middleware. The individual
agents consist of two parts. First, each agent is described by a so–called Agent
Description File (ADF), which denotes the structure of beliefs, goals and plans,
events, and sent and received messages in XML syntax. Secondly, the activities
an agent can perform are coded in plans, which are ordinary Java classes. Plan
descriptions in the ADF (so–called heads) reference the compiled Java classes
(so–called body) and denote the conditions, events, or goals, which may lead to
plan instantiation.

Jadex already does integrity checks of the XML agent descriptors, but these
are only syntax and type checks. In addition, the Jadex tool suite comprises a
a so–called Test–Center for the automated execution of unit–tests at the agent
level. Inspired by the successful JUnit framework for object–oriented software
systems, the Test-Center facilitates the execution of test suites composed of test
cases. The latter ones are encapsulated by dedicated test agents. E. g. this allows
to test capabilities that encapsulate specific application logic. In this respect, it
is still an open question how agent interferences can be avoided that are caused
by pro-active agent behaviors.

The work presented here focuses on semantic checking of agent systems. For
application specific semantic checks at runtime, we introduce the assertion con-
cept for the agent specifications. Annotating an assertion to an element of the
agent, such as a belief, goal, or plan allows the system to generate immediately
detailed error messages, whenever the system does not behave as originally in-
tended by the agent developer. Moreover, the XML representation of Jadex
agents lends itself to easy static analyses. We show how the internal and mes-
sage event issues from section 4.2 can be analyzed, and present a tool, which
visualizes the communication structure of a multi-agent system in a way, that
makes it easy to spot specification errors, directly from the visualization.

5.2 Checking Consistency Using Assertions

The implemented assertion mechanism executes arbitrary Java statements, that
can be annotated to beliefs (including beliefsets), goals and plans in assertion
tags in agent ADFs. The annotated statements will only be executed when the
ADF comprises a reference to the capability jadex.assertion.Assert, there-
fore simple ADF modification allows to turn assertion execution on and off.
Assertion statements are expected to evaluate to true. When they are violated
a detailed warning will be generated, specifying the agent and the element where
the assertion evaluated to false.

Validation of BDI Agents 195

Figure 4 exemplifies the usage of assertions. This code fragment is taken from
the sentry agent of the marsworld example, which stores reported and found
ore locations in a beliefset named my targets. The shown code checks whether
the sum of stored values does not exceed the amount of targets in the game
environment (defined in a class Environment), which can be accessed from within
the beliefs of the agent.

Fig. 4. An assertion statement added to a beliefset description in a jadex ADF. The
statement checks the maximum amount of a target set. The < entity is used to escape
the less than (<) character.

The Assert capability implements a listening object to all events originated
from belief access, goal or plan adoption. For all state changes of these elements
this listening object looks up annotated assertion statements and executes them.
This mechanism has been implemented as a crosscutting concern in the Jadex
system.

Crosscutting Concerns in BDI–Agents. Aiming towards automated as-
sertion execution, we utilized an enhancement to this modularization concept,
which allows to define crosscutting concerns in agent implementations. In [14]
so–called capabilities have been proposed to modularize BDI agents. These capa-
bilities comprise beliefs, goals, plans and a set of visibility rules of these elements
to the surrounding agent. In development of MAS, they are used to define specific
functionalities which can be imported by different agent types.

Modularization is a crucial concept in software engineering, following the Sep-
aration of Concerns principle. The functionality of a software system can be
decomposed into core concerns, which are to be separated into different compo-
nents or modules [36] and so–called aspects which crosscut them [37]. Crosscut-
ting prime examples are inter alia failure recovery and logging.

In this respect capabilities [38,14] intend to define and modularize core con-
cerns in BDI agents. Agent types can share functionality by inclusion of the same
capability. Similar to conventional development efforts — without the notion of
aspects — non–functional concerns can be captured in modules and executed
by explicit references to elements inside these modules. So–called co–efficient
capabilities (CC) automate this referencing by exploitation of the local reason-
ing mechanisms. We name these capabilities co–efficient, because they register
for contributive processing on certain BDI reasoning events. These occur during

196 J. Sudeikat et al.

agent execution and cause further agent actions, e. g. belief changes, goal adop-
tions and plan instantiation. While the agent executes as specified, additional
processing can be triggered. Whereas it is possible to to modify the surrounding
agent, this mechanism allows crosscutting functionalities, like logging, failure
recovery etc., to be automatically triggered, without explicit references in goals
or plans. Details of their implementation, a discussion of similarities and dif-
ferences to object–oriented aspects and their usage for minimum intrusive plan
observation can be found in [17].

Crosscutting Assertion Execution. Finally, we outline a prototype imple-
mentation that allows the crosscutting execution of assertion statements in BDI
agents. While assertion statements are annotated to beliefs goals and plans, the
execution mechanisms has to ensure that these statements are evaluated when-
ever these elements are accessed by the BDI agent interpreter. Therefore, the
crosscutting implementation is encapsulated in a co–efficient capability, which is
registered to react to all BDI reasoning events related to the annotated elements.

Fig. 5. Assertion Execution in BDI agents

The execution cycle of the corresponding implementation is outlined in
figure 5. On agent start–up the capability triggers the registration of an event–
listener for the surrounding agent (1). This listener is notified when corresponding
BDI–reasoning events occur in the reasoning engine that controls the event–based
execution cycle [4] of BDI agents (2), looks–up annotated assertion statements
(3) and executes these (4) in the agent context. When this Java statement does
not evaluate to true an appropriate error message is generated (5).

5.3 Internal Event Consistency

A typical declaration of an internal event (examination_finished) is exem-
plified in figure 6, taken from the sentry agent of the marsworld example.

Validation of BDI Agents 197

Fig. 6. An internal event triggers the execution of a plan

Dispatching this event triggers the execution of a plan called
CallProducerPlan() to search for an available producer agent to mine
ore. Declared InternalEvents can be dispatched within plans via the
Jadex API. We implemented a capability (jadex.iecheck.IECheck)
which checks whether all declared events trigger plans when the agent
starts. Although internal events typically trigger plans in the presented
way, it is also possible that plans handle these events directly by a
blocking call of waitForInternalEvent(String type, long timeout) or
waitForInternalEvent(String type). Therefore our implementation utilizes
the novel annotation mechanism of Java 5.0.5 to handle these cases. Developers
are expected to annotate the handled events to the plan classes using this
meta–data facility.

5.4 MessageEvent Consistency

Figure 7 exemplifies the declaration of a message event. The used performative,
transmission language and ontology are declared. In addition, the direction of
the message need to be specified. While this example is declared to be sent
(direction=send), possible values are also receive and send_receive. We de-
veloped a tool to examine the declared messages in a set of ADFs belonging
to an application. Message properties and declared directions are compared in
order to compute possible message exchanges. These are reported together with
orphaned message events, where no matching sender/receiver is specified.

The found message matches are displayed in a graph structure (according
to 4.2) as exemplified in figure 8. In these graphs agents (bigger, light) and
message events (smaller, dark) are denoted as nodes. Messages are connected
to the declaring agent via aggregation edges (following UML6 notation), while
possible message exchanges are represented by dark arrows. Since all messages
are displayed, i. e. are not structured in the protocols involved, we display the
MAS in a three dimensional space to allow efficient layout. Graph representations
are generated to be displayed with the Wilmascope7 tool. This tool visualizes
XML representations of graphs and allows users to set various rendering options
to control a force directed layout. Therefore users can adjust the graph layout
according to their needs and examine the graph closely in a virtual space.

5 http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
6 http://www.omg.org
7 http://www.wilmascope.org/

198 J. Sudeikat et al.

Fig. 7. Declaration of a message event in the sentry agent of the marsworld example.
This message transmits a location to the production agent to order the mining of ore.

Fig. 8. A defective (left) and correct (right) communication–network of the Marsworld
example. Bigger vertices (light colored) denote Agents while the smaller ones (dark
colored) represent MessageEvents in the agent ADFs.

Figure 8 (right hand side) displays the static communication structure of
the marsworld example. Carry and production agents can report ore locations
(inform_target) to the sentry agent. Sentry agents can order mining by the
production agent (via request_producer), and producer agents in turn can order
the transportation of ore by carry agents (request_carry). The left hand side
shows the same MAS with a mistake in the declaration of the request_producer
message. The force directed layout highlights that sentry and producer agents
can not correctly communicate as message events are orphaned.

6 Conclusions

In this paper we have highlighted that the validation of agent behaviors is a ma-
jor challenge in MAS development. In order to test BDI agent implementations,

Validation of BDI Agents 199

i. e. agent behaviors based on BDI reasoning processes, we proposed assertions,
exemplified their usage and outlined a crosscutting implementation. Assertion
statements are annotated to BDI elements and their execution is triggered by
BDI reasoning events. In addition, we discussed the static analysis of agent dec-
larations to improve the overall consistency of agent implementations and to
detect specification errors. A prototype enables to verify the consistency of de-
clared internal events and messages. Finally, the overall communication structure
of MAS can be visualized as three dimensional graphs.

The presented visualization approach is still preliminary. We plan to enhance
display and user interaction to show dynamic properties of agent execution
(cf. [17]). The adoption of assertions in actual development efforts will reveal
benefits and limitations of the proposed validation approach. Examination of
common bugs and debugging strategies for BDI agents may inspire the method-
ical usage of assertions, i. e. a structured process to derive assertions from agent
declarations. In addition it needs to be taken care that violations of these are in
fact reflecting inconsistent agent states and the assertions have no side effects.
While we proposed here the usage of assertions to check individual agent rea-
soning, it is an open research question whether assertions on the MAS level can
be inferred that describe invariant properties on the agent interplay.

References

1. Odell, J.: Objects and agents compared. Journal of Object Technology 1 (2002)
2. Brooks, R.A.: Elephants don’t play chess. Robotics and Auton. Sys. 6 (1990) 3–15
3. Bratman, M.: Intentions, Plans, and Practical Reason. Harvard Univ. Press. (1987)
4. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of

the First Intl. Conference on Multiagent Systems. (1995)
5. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning: an experiment with

a mobile robot. In: Proc. of AAAI 87, Seattle, Washington (1987) 677–682
6. Pokahr, A., Braubach, L., Lamersdorf, W.: A flexible BDI architecture supporting

extensibility. In: The 2005 IEEE/WIC/ACM Int. Conf. on IAT-2005. (2005)
7. Jennings, N.R.: Building complex, distributed systems: the case for an agent-based

approach. Comms. of the ACM 44 (4) (2001) 35–41
8. Liedekerke, M.H.V., Avouris, N.M.: Debugging multi-agent systems. Information

and Software Technology Journal 37 (1995) 103–112
9. Ndumu, D.T., Nwana, H.S., Lee, L.C., Collis, J.C.: Visualising and debugging

distributed multi-agent systems. In: Proc. of AGENTS ’99. (1999) 326–333
10. Flater, D.W.: Debugging agent interactions: a case study. In: Proceedings of the

2001 ACM Symposium on Applied Computing (SAC), ACM (2001) 107–114
11. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language.

In: MAAMAW ’96: Proceedings of the 7th European workshop on Modelling au-
tonomous agents in a multi-agent world. (1996) 42–55

12. Braubach, L., Pokahr, A., Lamersdorf, W., Moldt, D.: Goal representation for BDI
agent systems. In: Proc. of PROMAS’04. (2004)

13. Pokahr, A., Braubach, L., Lamersdorf, W.: A bdi architecture for goal deliberation.
In: Proc. of AAMAS ’05. (2005) 1295–1296

14. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI agents in
functional clusters. In: ATAL ’99, Springer-Verlag (2000) 277–289

200 J. Sudeikat et al.

15. Menzies, T., Pecheur, C.: Verification and validation and artificial intelligence. In
Zelkowitz, M., ed.: Advances in Computers. Volume 65., Elsevier (2005)

16. Timm, I.J., Scholz, T., Frstenau, H.: IV From Testing to Theorem Proving. In:
Multiagent Systems - Intelligent Applications and Flexible Solutions. to be pub-
lished by Springer (2006)

17. Sudeikat, J., Renz, W.: Monitoring group behavior in goal–directed agents using
co–efficient plan observation. In: Proc. of the 7th Inernational Workshop on Agent
Oriented Software Engineering (AOSE’06). (2006)

18. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the
prometheus methodology. Engin. Applications of Art. Intel. 18 (2005) 173–190

19. Chesani, F.: Formalization and verification of interaction protocols. In: ICLP.
(2005) 437–438

20. Bot́ıa, J.A., López-Acosta, A., Gómez-Skarmeta, A.F.: ACLAnalyser: A tool for
debugging multi-agent systems. In: ECAI. (2004) 967–968

21. Lam, D.N., Barber, K.S.: Automated interpretation of agent behavior. In: Work-
shop for Agent-Oriented Information Systems (AOIS-2005). (2005)

22. Lam, D.N., Barber, K.S.: Comprehending agent software. In: Proc. of the 4th int.
joint conf. on autonomous agents and multiagent systems (AAMAS ’05). (2005)

23. Low, C.K., Chen, T.Y., Rönnquist, R.: Automated test case generation for bdi
agents. Autonomous Agents and Multi-Agent Systems 2 (1999) 311–332

24. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. Number ISBN 0-470-86120-7. John Wiley and Sons (2004)

25. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using
design artifacts: the case of interaction protocols. In: Proc. of AAMAS ’02. (2002)

26. Poutakidis, D., Padgham, L., Winikoff, M.: An exploration of bugs and debugging
in multi-agent systems. In: Proc. of ISMIS 2003. (2003)

27. Hoare, C.A.R.: Assertions: a personal perspective. Software pioneers: contributions
to software engineering (2002) 356–366

28. Floyd, R.: Assigning meaning to programs. Mathematical Aspects of Computer
Science XIX American Mathematical Society (1967) 19–32

29. Turing, A.M.: Checking a large routine. In: Report on a Conference on High Speed
Automatic Calculating Machines, Cambridge University Mathematical Lab. (1949)

30. Meyer, B.: Object Oriented Software Construction. Prentice Hall (1997)
31. Voas, J.: How assertions can increase test effectiveness. IEEE Software

March/April (1997) 118–122
32. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: Jack - intelligent agents – com-

ponents for intelligent agents in java. Technical report, Agent Oriented Software
Pty. Ltd (1998)

33. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In:
Multi-Agent Programming. (2005) 149–174 Book chapter.

34. Ferber, J.: Multi-Agent Systems. Addison Wesley (1999)
35. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A BDI Agent System Combining

Middleware and Reasoning. In: Software Agent-Based Applications, Platforms and
Development Kits, Birkhäuser (2005)

36. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15 (1972) 1053–1058

37. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Proc. of ECOOP. Springer (1997)

38. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the capability concept for
flexible BDI agent modularization. In: Proc. of PROMAS-2005. (2005)

A Tool Architecture to Verify Properties of Multiagent
System at Runtime

Denis Meron1 and Bruno Mermet2

1 LITIS, University of Le Havre, France
2 GREYC, University of Caen, France
Denis.Meron@univ-lehavre.fr
Bruno.Mermet@univ-lehavre.fr

Abstract. This paper describes an architecture allowing to verify properties of
a multiagent system during its execution. This architecture is the basis of our
study whose goal is to check at runtime, if agents and more generally multia-
gent systems satisfy requirements. Considering that a correct system is a system
verifying the properties specified by the designer, we are interested in the “prop-
erty” notion. That is why we give here a definition of “property” and we present
an architecture to validate them. The architecture, a multiagent system itself, is
based on a set of agents whose goals are to check at runtime the whole system’s
properties. So after a brief description of the “property” notion, we describe our
architecture and the way to check systems.

1 Introduction

Today, a huge number of scientific areas use computers either to solve problems or to
design simulations. Indeed, problems become more and more complex and it is asked to
computer science to study and solve such problems. As a consequence, multiagent sys-
tems (MAS thereafter) are considered as a solution to take this complexity into account,
and are more and more used to design new softwares. However, MAS development is
a complex process because many autonomous entities evolve concurrently and asyn-
chronously. So, as it is performed for softwares developed using the object paradigm,
multi-agent programming needs to validate and verify MAS developed. In other words,
when a MAS is developed, it is required to check whether the system has been correctly
developed.

This idea is not new and several research have already been performed on verifica-
tion and validation of MAS [6,20,4,18,10]. Among them, few ones deal with the way to
prove the correctness of MAS either by theorem proving [20] or by model-checking [1].
However, the proof may be difficult to perform especially when the problem is massively
distributed with many interactions between agents. Furthermore, model-checking costs
time and the problem must be reduced to a finite one, with a limited number of states
(even if unbounded model-checking using binary decision diagrams reduces this limi-
tation). A second way to validate softwares is to perform tests, thanks to an architecture
making testing feasible. Contrary to the model-checking, tests are not required to be ex-
haustive. As a consequence, the confidence brought by tests is reduced, but is easier to
obtain. But in the case of MAS, which are open systems, the coverage of test is difficult to

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 201–216, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

202 D. Meron and B. Mermet

assess and is often near zero. Moreover, because of the asynchronous execution schema
of the agent, a given test scenario is not guaranteed to give the same result twice.

In this context, in order to check that a MAS was correctly developed, it is useful to
design an architecture allowing to test the final system on the fly. Indeed, we need to
design a set of agents whose goal is to detect and highlight any effective behavior that
is not compatible with the expected behavior. Assuming that a well implemented MAS

has the properties that the designers implemented as a principle, we think that checking
a system must rely on the verification of these properties. Moreover, to validate a large
scale of MAS, we think that the architecture needs to be independent of any system
or agent oriented framework. The rest of this paper is structured as follows: section 2
presents some existing studies on system validation. Section 3 defines the notion of
property. In section 4, the architecture we designed to check properties at runtime is
exposed. Finally, Section 5 concludes the paper, with an indication of on-going work.

2 State of the Art

Since the birth of computer science, when designing software for critical systems
(where life may depend on it) or just toys problems, the necessity to guaranty both
the correctness of the design and the correctness of the system execution appeared as a
major problem for developers. But most of agent oriented framework like JADE, Agent-
Builder, Jack or MADKIT, don’t give really issue for debugging [6]. So it appears that it
is necessary to design an architecture allowing to check the integrity of the system. The
idea is not new and several researches have already be done by Steven SAPHIRO [20],
David FLATER [4], or also David POUTAKIDIS [18,19]. In the three next sections we
will see the different ways they use to check systems.

2.1 Specification Language

Steven SHAPIRO et al. in [20] describe a language to specify MAS able to prove that a
system was correctly designed. The language named CASL for Cognitive Agents Spec-
ification Language is a framework which has a mix of declarative and procedural com-
ponents to facilitate the specification and the verification of multiagent systems. The
main idea is to specify the mental states of an agent in a mathematical way, so it may be
provable. More particularly the language allow to specify the agent information (such
as knowledges and beliefs) and its goals. They have also developed a verification envi-
ronment (CASLve) for their language based on the Prototype Verification System (PVS)
[17] to make it easier to verify properties of CASL specification. The verification envi-
ronment provides the user a comprehensive library of proof methods, or lemmas.

This method is very interesting but the proof of a complex system is very difficult to
obtain. Moreover, they are not interested in problems that may appear at run time or by
the effective agent behavior.

2.2 Behavior Study

Some studies rely on collecting information that represent the behavior of the system
to control [21,16]. The focus in such debugging tools is on collection of information

A Tool Architecture to Verify Properties of Multiagent System at Runtime 203

(message exchange, interaction, etc) and on the presentation to the user with filtering ap-
plied to the message. However, as David FLATER writes in [4], the study of such views
of MAS is long and difficult. Furthermore these methods have some limitations [18]:

– too many information messages are presented to programmers, making difficult to
understand what is really happening in the system.

– Without a proper procedure for identifying what sorts of information to look for,
it is unrealistic to know in advance what information will be useful when trying to
debug the system.

– Most systems have no means of identifying where problems may occur, even if the
developer notices an error, it could take an unnecessarily long time to pinpoint the
location of this error.

– They rely on the right interpretation of the information by the programmer. Since
the output of most of the debugging tools is raw messages the developer needs
to inspect the content of the messages and the flow of messages and try to deter-
mine what is going wrong. With a large number of messages, this can be extremely
difficult.

In their study David POUTAKIDIS et al. [18,19], describe a new way for validate
the system. They use a two stages methodology. First they study the system during
the design stage to collect informations on the agents. Secondly they integrate these
informations on an agent witch goal is to validate the system behaviors.

« Our central thesis is that the design documents and system models developed when
following an agent-based software engineering methodology can be incorporated in an
agent and used at run-time to provide for run-time error detection and debugging. »

In this paper they are interested by the case of communication exchange. During the
design stage they translate all possible conversations into Petri Nets. The debugging
agent has a library of known protocols (represented as Petri nets). When a new con-
versation is started (i.e. the debugging agent received a message which isn’t part of an
existing conversation) the debugging agent instantiates all protocols which are capable
of beginning with the received message. If a message received is not compatible with a
known conversation, the agent send an error signal.

This way to check the system is very interesting and our research takes inspiration
from this work but there is also some limitation. Indeed the conversation translation in
Petri Nets may very fastidious if there are a lot of agents whose communicate. Further-
more to check the conversation, all the agents must send a carbon copy to the debugging
agent. This task, and the authors are aware of this, may dramatically disturb the system
execution particularly if the system is time dependent.

2.3 Exception Handling

Another way to check systems is given by Mark KLEIN et al. [10]. The main idea is
to add agents to the system whose goals are to spot any departure from the « ideal
collaborative behavior ». All of these departures are called exceptions. This approach
is taking inspired by decision support systems such as those used in medicine where a
description of symptoms leads to a diagnostic.

204 D. Meron and B. Mermet

« This service can be viewed as a kind of “coordination doctor”; it knows about
the different ways multi-agent systems can get “sick”, actively looks system-wide for
symptoms of such “illnesses”, and prescribes specific interventions instantiated for this
particular instance from a body of general treatment procedures. »

However the doctor agents need to have a knowledge base of generic exception han-
dling detection, diagnosis and resolution expertise. This data base may be very impor-
tant to feet with a large scale of systems’ exceptions. So weakness and portability of the
framework may be compromise.

2.4 Design by Contract

Bertrand MEYER in [14,15] described a software engineering theory based on contracts.
The central idea is that software entities have obligation to other entities based upon
formalized rules (assertions) between them. The two entities rely by contract are called
caller and routine. Caller must guarantee certain conditions before calling the routine
(precondition) and the routine guarantee certain properties after the call (postcondition).
Precondition binds the caller and postcondition binds the routine. Beside there is also
an assertion rely on invariant that must be satisfied by every instance of the class.

The language that offers the best support for design by contract is Eiffel, designed by
Bertrand MEYER (www.eiffel.com), but there is also jContractor [9] or iContractor [11]
for java and several works have already done for different languages. Furthermore, some
studies try to apply design by contract on agent systems like the one done by Christophe
GARION [5]. However, whatever the language used, the assertions are expressed as
specification code that is a compiled along with the actual implementation code and
may disturb it. Furthermore, temporal aspect of the system can’t be taken into account
with the actual assertions. Finally, as the assertions are expressed on entities codes, the
validation focuses on entities’ problems and doesn’t deals with set of entities or system
behaviors.

2.5 Synthesis

All of these researches are interesting and try to validate systems by different ways.
However, there are some limitations. Ones may difficult to do due to the complexity
of the systems, the others need an important task from users or a lot of informations
is needed. Our research takes inspiration from these works and tries to overcome these
limitations. The main idea is not to specify all the system but only the critical part of
it that we call « properties ». Then, using a multiagent architecture we try to check at
run time the information specified. To design this architecture we think it is important
to respect a set of rules called WIDE :

– Weak : the architecture needs to be weak to make its portability more easier.
– Independent : the architecture must be able to validate MAS design on several

framework like MADKIT, JADE, or Pœnix also.
– Dynamic : the verification needs to be performed dynamically, that is to say at run

time.
– Efficient : Validating the whole system is not useful, only the specified properties

of the system must be be verified.

A Tool Architecture to Verify Properties of Multiagent System at Runtime 205

Considering that a correct system is a system verifying the properties specified by the
designer, we will describe in the next section what we call property.

3 Properties

Studying properties is the basis of our researches, so we need to define clearly the
property notion. First we will give a general definition for property and secondly we
will describe it in a more formal way.

3.1 Definition

Thanks to our study on multiagent system and notably the definition given by Jacques
FERBER [3], we define a property as below :

In a multiagent system, we call properties the phenomena, or more generally, the
observable effects produced by the agents themselves, by the agents’ interactions
between each other, and the interactions of the agents with the environment.

To summarize, we can say that:

In a multiagent system, we call property a phenomenon P which:

– is observable;
– is produced by a single agent or by a set of interacting agents;
– brings some elements on the agent’s state, on the agent’s group or on the envi-

ronment;
– brings, possibly, some elements on the interactions;
– may predict the aim of an action or of several actions.

Of course, this is a general definition and it will be necessary to fit it with every sys-
tem. However, we can separate here two kinds of properties: the invariant (or static)
properties and the dynamic ones (also called liveness properties). The static ones are
properties that are true during the whole execution of the system. They don’t change
their state. To the contrary, the state of the dynamic properties will change while the
system evolve. However, it doesn’t mean that the aims of the dynamic properties will
change, it just means that they depend of the system’s dynamics. Thus, against the static
properties, the dynamic ones aren’t true or false forever. Their state may change because
of interactions. In other words, this is the agents’ actions that make dynamic property
became true or false.

3.2 Formalism

With the help of the Temporal Logic of Actions defined by Leslie LAMPORT [12], we
have defined an early stage formalism for ours properties. As we have seen, there is two
types of properties. The temporal definition of static properties SP is very simple :

206 D. Meron and B. Mermet

– �P : the property remains true during all the execution of the program, from the
beginning to the end.

For dynamics properties, we define two kinds of properties :

– Delayed Static Property (DSP) : Q � �P , when the property becomes true, it
remains true to the end of the execution.

– Shortlived Dynamic Property (SDP) : Q � (P until R), the property becomes
true and remains true during a finite time. This time may be a time between two
events. It is a subtype of the leads-to property described by Chandy and Misra [2]

The DSP and SDP properties follow the same rule :

– C � P , when C becomes true, P becomes true one day. In the sequel, C is called
precondition.

Noteworthy : Ones may says that a SP is a DSP with the beginning of the execution
as pre-condition. But for a DSP, when the precondition becomes true, the property will
become true one day. In other words, the precondition for the DSP is a necessary con-
dition but not sufficient to make the property to appear. On the contrary, the beginning
of the execution is a condition necessary and sufficient to make the SP appear.

Furthermore, in our study, we have seen at least four types of pre-conditions which
may be concurrent or exclusive:

– attribute, a condition on the state of the attribute;
– action, a condition on the fact that an action needs to be activated or not;
– message, have we received a message;
– agent state, miscellaneous state that doesn’t match with the three first elements.

The table below, « Known dynamic property pre-conditions », shows the different val-
ues that the known conditions can take and their meanings:

Table 1. Known dynamic property pre-conditions

Types Values Meanings

Attributes
true/false Boolean attribute

=><! value comparison values

Action
a+ active
a- non active
∅ none active

Message
r+ received
r- non received

3.3 Properties Extraction

The extraction of the properties is not yet automatized. The designer must define, in
the design stage, all the properties to verify. In a previous paper [13], we have defined
a methodology, that relies on the work done by Michael WOOLDRIDGE and Nicolas

A Tool Architecture to Verify Properties of Multiagent System at Runtime 207

JENNINGS on the GAIA methodology [22], to extract properties. We propose a two
stages study. The first stage, “properties 1”, will study properties in the analysis part of
the GAIA method. The second one, “properties 2”, will give us new properties thanks
to the design part and also thanks to “properties 1”. The figure below represents the
different states of the MAS study.

Design
Agents Services Acquaintance

model

Roles Ressources Interactions

phase 1

phase 2
Properties

Properties

Problem

Analysis

Fig. 1. The properties study

As we can see, the properties are extracted during the analysis and design stages. In
fact, it will be at the end of each step of analysis and design that we will define new
properties. So, after each step of the MAS construction, we will try to find and complete
the set of properties. Therefore, integration of the properties analysis is an additional
step for all levels of the MAS construction process.

In section 3.1, we have made a difference between static properties and dynamic
ones. So data needed to describe a property depends on its type. During the extraction
process, it is necessary to give at least four data to describe a static property:

– name: name of the property;
– type: static or dynamic;
– range: agent, agent group, situated object or environment;
– action: actions needed for the validation.

Lets take an example to illustrate static property notion. Lets think that an agent in a
system has a bag. Clearly the number of elements in this bag can’t exceed the capacity
of the bag and can’t be under zero. Table 2 represent this property where |Ri| represents
the capacity of the bag.

To describe a dynamic property, we need two more fields:

– pre-condition(s): condition(s) that make dynamic property appear;
– time: maximum delay between condition appear and property becomes true.

The notion of time is difficult to clearly define and may change from one system to
another. In our theory, section 3.1, a dynamic property becomes true one day once its

208 D. Meron and B. Mermet

Table 2. Example of property

Name: Bag integrity
Type: Static
Range: agent1
Description: Describes the bag integrity by restricting the
number of contained elements.

action: 0 ≤ nbElement ≤ |Ri|

precondition becomes true. But because of pragmatic reasons, we need to restrict time
between these two events. We have chosen to limit the number of time units and this
number is defined by the designer. As time unit may change from one system to another,
we don’t fix unit value for the time field, it is just a number.

Table 3 represents an example of a dynamic property. An agent has a reserve. When
reserve level is equal to zero, the agent needs to refill it and then ask for feel by sending
a message.

Table 3. Ask for feel property

Name: AskForFeel
Type: Dynamic
Range: agent1
Description: ensure that if the level of our reserve is zero,
we send a message to ask for feel.

pre-condition(s): reserveLevel = 0 time: 5
action: send message “empty reserve”

The description field is optional but it may very useful to make your mind clear as
we can have very important number of properties. To the contrary, the others fields are
critical as we will seen in the next section.

3.4 Specification Languages

Properties are needed to validate multiagent system. Human need to understand and
extract properties but some virtual agents need also to understand and use these prop-
erties to validate system. So we need to have two specifications languages, one must
be understandable by a human (« hight level language »), while the other one must
be understandable by an agent at least (« low level language »). The second one is in-
spired from works on design by contract and notably by those made in java by Murat
KARAORMAN et al. [8]. We will discuss more about this language later in the paper.
Hight level language must be understandable only by human and it might look like what
is shown in the table 2. But we want to have more formal representation and we work
on a language inspired from the Temporal Logic of Actions (TLA) [12]. The main idea

A Tool Architecture to Verify Properties of Multiagent System at Runtime 209

is to translate hight level language into low level language in an automatic way. For now
this work is in embryo but we thing it is a very interesting and useful research way.

Low level language. As we have said, this language is designed in java. Each property
is translated into a java method witch returns a string value. The string value must be
one of these:

– “valid”, if property has been checked and is valid;
– “non valid”, if property has been checked and is not valid;
– “non decidable”, if one of property’s pre-condition is not valid, then the property

can’t be checked, so it is not decidable.

The method must have zero argument and the name of the property. Let’s take the
example (table 2) seen in the previous section. This property is represented in our lan-
guage by this method included in a class named « PropertiesAgent1 »:

public String bagIntegrity () {
if(nbElement >= 0 &&

nbElement <= max)
return PState.valid();

return PState.nonValid();
}

As we can see, the name of the method is the same as the property’s one, the range is
directly integrating in the class name and the action is performed by the method’s body.
In that case, the body may be translated as: if number of bag’s elements is between zero
and the max value then method return valid. Otherwise, the method return non valid.
Only the type field doesn’t appear explicitly in the language. But checker agent doesn’t
really need this information, only the designer needs it to design properties. The fact
that one property is dynamic give to the designer that the property depends on time.
So it is the designer himself who needs to design property’s method according to all
property’s fields including time. Let’s take an example of dynamic property to illustrate
these words. Typically the ask for feel property seen in section 3.3, table 3, is dynamic.
In the java code below, that represent askForFeelProperty, we can see the time notion
(arrows →):

public String askForFeelProperty () {
if(reserveLevel == 0) {

int i = 0;
--> while(i < 5) {

if(findMessage("reserve empty"))
return PState.valid();

--> pause(1000);
i++;
}
return PState.nonValid();

}
return PState.nonDecidable();

}

210 D. Meron and B. Mermet

while() and the method pause represent the temporal mechanism that we can trans-
late as: if after 5 seconds the property isn’t valid, then it is not valid. We can see that
the dynamic notion is directly integrated in the body of the method. Furthermore, if the
pre-condition (reserveLevel equal zero) is not valid, the property is not decidable.

To conclude, we can say that if designers respect some rules like method’s template
and return value, we can design every properties as complex as they are. Moreover, as
the low level language is in java language, it is well understandable by designer and let
the user free to design exotic properties.

In the next section we will describe the architecture of the framework we developed
to validate a multiagent system with respect to its properties.

4 PVA : Property Validation Architecture

4.1 Introduction

As we have seen in the section 2.4, the architecture must respect some important rules.
So architecture is split into three distinct parts as it is shown in figure 2.

PLUGINS

Plugin 2

Plugin 1

Plugin n

ARCHITECTURE BASE
OBJECTS

PROPRERTYMAS

Fig. 2. PVA Architecture

The basis of the architecture is a multiagent system where the checker agents evolve.
The checker agents are the entities responsible for the validation of the system studied.
Property objects are the essential being for the validation so it needs a particular at-
tention. Finally plug-ins are the pipes between our framework and the system to check
or design architecture. All the three part is what we call PVA for Property Validation
Architecture.

The architecture basis (section 4.2) allow to have a dynamic and independent frame-
work. The property objects (section 4.3) allow to have the weakness characteristics of
the WIDE concept described previously because slight informations is necessary for
their efficiency. Finally plug-ins (section 4.4) ensure the efficiency and the portability
of the architecture.

A Tool Architecture to Verify Properties of Multiagent System at Runtime 211

4.2 Architecture Basis

The basis of our architecture is a multiagent system. Indeed, problems to study are often
complex and using a set of checker agents seems a good choice for at least two reasons.
At first, the complexity of the problems is directly fitted into multiagent’s complexity.

Fig. 3. Architecture UML diagram

Secondly, the efficiency increases because of the number of checking tasks being per-
formed at the same time. For now we use a framework designed by Olivier GUKNECHT

and Jaques FERBER [7] as the basis of the multiagent system. Thus we used the micro-
kernel of MADKIT to simulate our checker agents. This seems not fit with the indepen-
dent rules that we want for the architecture. We do this choice to save time and the fact
is that we use only the kernel of MADKIT.

The UML diagram below represent these architecture. Architecture, Launcher and
checkerAgent Classes, their descendants and the whole graphics classes are the archi-
tecture basis.

As we can see, we design three types of agents which are all inheriting from Check-
erAgent: RandomAgent, LeadAgent and AgentTerm. All the three have the same goal,
that is to say verifying properties of MAS, but their behaviors are different. A checker
agent will plug itself to an agent of the system studied and check its properties. The key
idea is that a checker agent reads information by looking directly at agent’s data to not

212 D. Meron and B. Mermet

disturb its execution. The difference between the three checkers agents is in the way to
choose the agent and the properties to check. We define agents’ behaviors as follow:

– RandomAgent: it evolves in the MAS and chooses an agent in a random way. When
it is plugged on an agent to check, it will choose several properties to validate. This
agent performs a kind of system audit.

– LeadAgent: as a RandomAgent, this one evolves in the MAS to find an agent to
check. When it is plugged, it will be lead by the agent in the choice of the properties
to check.

– AgentTerm: This one is lead by the user. it gives to the user a way to choose the
agent of the system to validate and all its properties. The user can choose an agent
which seems not working correctly. In other words, this type of agent allows a
human assisted watch.

With the agents and the system, we have designed a graphical user interface as we
can see in the figure 4.

User interface is divided in four parts. The first one, made of six buttons in the upper
left, allows to launch the agents necessary to check the system. Below, we can see the
list of launched agents. Clicking to an agent of the list allows to get information on the

Fig. 4. Graphical user interface

A Tool Architecture to Verify Properties of Multiagent System at Runtime 213

agent checked at this time. This information appears on the main panel to the right. The
part in the bottom is the output of the system. Finally the pop-up allows to connect with
the framework, MADKIT in that case.

4.3 Properties

Checker agents use properties to check systems so we design objects with the informa-
tions necessary for validation. In fact, we need to have two generic classes. The first
one, the « VerifiableAgent » class , has been designed to make verifiable any agent of
the system (including our framework). This class contains validation basic functions
and all agents that we want to check need to extend this class. The second one, « Prop-
erties », implements some basic functions useful to checker agent. As in design by
contract [8], each agent to check is linked to a class that contains all its properties. The
class is named with a regular name built as: Properties key word followed by the agent
name (i.e PropertiesAgentName). With our previous example, table 2, section 3.3, the
class containing all the properties of agent1 is named “PropertiesAgent1”. As we have

Fig. 5. Agent Random

214 D. Meron and B. Mermet

seen in section 3.2, some earlier study is needed to get properties’ information. Once
these characteristics are known, we need to complete PropertiesAgent1 class.

To validate our theory and before including it in our architecture, we have designed
a prototype using the MADKIT framework. A checker agent is a graphic frame where
we can see the agents to check and all their properties as shown in figure 5.

All properties for a given agent and their states are in the main frame. A green check
mark (V) means that the property is valid, a red cross (X) that it is not valid and a blue
question mark (?) that it is not decidable. In the figure 5 we can see four properties,
three of them are valid and one is not. In the top of the main frame there is a scroll
menu that contains all verifiable agents. The main frame shows properties of the agent
spotted in scroll menu.

4.4 Plug-ins

The long-term goal of our research is to make the architecture independent from any
framework. However, the main idea is also to validate MAS design on frameworks such
as MADKIT, Phœnix or JADE. So, we need to find a way to check systems designed in
such frameworks. Thus, we have chosen to have kinds of pipes between our architec-
ture and frameworks. Such pipes (or plug-ins) need to allow two things at least. First,
they must allow communication between PVA and target system. Secondly, it will be
necessary to have some system’s data from the target system (like value of an attribute),
plug-ins must make it possible.

The first plug-in, and the only one developed at the moment, allows the connection
with MADKIT.

MADKIT plug-in. MADKIT is a distributed multiagent framework to design multia-
gent systems. So the communication between several MADKIT is already performed
by the framework. The agent communicator allows a MADKIT kernel to communicate
with another one. As our architecture basis uses a MADKIT kernel, it would be easy
for us to communicate with MADKIT. But notice that our long-term goal is to allow
the usage of any kernel for the architecture basis. So we can’t use this MADKIT kernel
to make connection between PVA and MADKIT. So, we use another one MADKIT ker-
nel without any relation with our Architecture basis. Thanks to communicator agent,
PVA can communicate with target system designed on MADKIT. We now have the first
requirement for the plug-in. The second requirement must allow to have informations
about the target system and particularly about the agents of the target system. So we
use a set of agents (probe agents) running in the plug-in’s kernel will give data (value
of properties attributes or any else attributes) needed by checker agents to check prop-
erties. Their goal is to read the value of the attribute when they are asked for. They read
directly the value in the system and the designer doesn’t need to modify any part of its
agents’ code. Our checker agents, when it’s needed, ask for attribute value to them. In
fact, the communicator agent is the pipe between MADKIT kernels and probe agents is
the pipe between our checker agents and target agents. To summarise, first, target sys-
tem and PVA seem running in the same kernel thanks to communicator agent. Secondly,

A Tool Architecture to Verify Properties of Multiagent System at Runtime 215

checker agent may have data needed by asking to probe agents. The communicator
agent, a set of probe agents and the micro-kernel define this first plug-in which allows
us to validate MAS design in a MADKIT framework.

5 Conclusion

The goal of the PVA architecture we presented is to validate multiagent systems at run-
time independently from the platform chosen for its implementation. Contrary to al-
ready existing solutions, we made the choice to validate these systems during their
execution : in specific cases, it is a quite efficient way. Indeed, we think that there is
no better checking that those which are done on systems in operating conditions espe-
cially when interested in complex problems solved by MAS. Furthermore, mathematical
proof, when they are possible, ought to take a very long time on complex systems. We
think that our architecture gives a new solution to the problem of the validation of
MAS. Indeed, to integrate the complexity of the problem directly, the architecture is a
multiagent system also. Furthermore, we validate the MAS by checking the whole prop-
erties specified by the designer which seems more powerful to us. In addition, the idea
to use plugins to connect the pva system to various platforms makes the architecture
independent and usable by many developers. However, the development of the whole
architecture and in particular of the plug-ins is not finished. Indeed, only the MADKIT

plug-in is operational yet. In the near future, we will also define more formally the
different properties we are interested in.

References

1. Rafael H. Bordini, Michael Fisher, Carmen Pardavila, and Michael Wooldridge. Model
checking agentspeak. In AAMAS’03, pages 409–416, Melbourne, Australia, 2003. ACM
Press.

2. K. Mani Chandy and Jayadev Misra. Parallel Program Design : A Foundation. Addison-
Wesley, 1988.

3. Jacques Ferber. Les SystÃŃmes Multi-Agents, Vers une intelligence collective, pages 13–29.
InterEditions, 1995.

4. David W. Flater. Debugging agent interactions: a case study. In Selected Areas in Cryptog-
raphy, pages 107–114, 2001.

5. Christophe Garion and Leendert van der Torre. Design by contract deontic design language
for multiagent systems. In Je sais pas, pages 107–114, 2005.

6. Tony Garneau and Sylvain Delisle. Programmation orientÃĹe-agent : ÃĹvaluation compar-
ative d’outils et environnements. In JFIADSMA’02, 2002.

7. Olivier Gutknecht and Jacques Ferber. The MADKIT agent platform architecture. In Agents
Workshop on Infrastructure for Multi-Agent Systems, pages 48–55, 2000.

8. Murat Karaorman and Parker Abercrombie. jcontractor: Introducing design-by-contract to
java using reflective bytecode instrumentation. Formal Methods in System Design, March
2003.

9. Murat Karaorman, Urs Hölzle, and John Bruno. jContractor: A reflective Java library to
support design by contract. Lecture Notes in Computer Science, 1616:175–??, 1999.

216 D. Meron and B. Mermet

10. Mark Klein and Chrysanthos Dallarocas. Exception handling in agent systems. In Oren
Etzioni, Jörg P. Müller, and Jeffrey M. Bradshaw, editors, Proceedings of the Third Inter-
national Conference on Autonomous Agents (Agents’99), pages 62–68, Seattle, WA, USA,
1999. ACM Press.

11. Reto Kramer. icontract – the java design by contract tool. In Technology of Object-Oriented
Languages and Systems, pages 295–307, Los Alamitos, California, USA, 1998. IEEEE.

12. Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-
guages and Systems, 16(3):872–923, May 1994.

13. Denis Meron, Bruno Mermet, GaÃŐle Simon, and Sylvain Sauvage. Specifying properties
of MAS : Towards on the fly architecture. In SASEMAS’04, 2004.

14. Bertrand Meyer. Object-Oriented Software Construction, chapter 11. Prentice Hall, second
edition, 1997.

15. Bertrand Meyer. Applying design by contract. Computer, 25(10):40–51, October 1992.
16. Divine Ndumu, Hyacinth Nwana, Lyndon Lee, and Jaron Collins. Vilualising and debugging

distributed multi-agent systems. In the Third Annual Conference on Autonomous Agents,
pages 326–333, 1999.

17. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: combining specification,
proof checking, and model checking. In Rajeev Alur and Thomas A. Henzinger, editors,
Computer-Aided Verification, CAV ’96, number 1102 in Lecture Notes in Computer Science,
pages 411–414, New Brunswick, NJ, July/August 1996. Springer-Verlag.

18. D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems using design
artifacts: The case of interaction protocols. In AAMAS’02, 2002.

19. David Poutakidis, Lin Padgham, and Michael Winikoff. An exploration of bugs and debug-
ging in multi-agent systems. In AAMAS’03, 2003.

20. Steven Shapiro, Yves LespÃĹrance, and Hector J. Levesque. The cognitive agents specifi-
cation langage and verification environment for multiagent systems. In AAMAS’02, 2002.

21. Mark H. Van Liedekerke and Nikolaos M. Avouris. Debugging multi-agent system. Infor-
mation and Software Technology Journal, 37(2):103–112, February 1995.

22. Michael Wooldridge, Nicolas R. Jennings, and David Kinny. The gaia methodology for
agent-oriented analysis and design. In AAMAS’00, 2000.

On the Application of Clustering Techniques to

Support Debugging Large-Scale Multi-Agent
Systems

Juan A. Bot́ıa, Juan M. Hernansáez, and Antonio F. Gómez-Skarmeta

Departamento de Ingenieŕıa de la Información y las Comunicaciones
Universidad de Murcia

Abstract. This work analyses the problematic of debugging a multi-
agent system. It starts from the fact that MAS are a particular type of
distributed systems in which the active entities are autonomous in the
sense that behavior and knowledge of the whole system is distributed
among agents. It situates the problem by firstly studying the classical
approaches for conventional code debugging and also the techniques used
in distributed systems in general. From this initial perspective, it tries to
situate agent and multi-agent systems debugging. It finally proposes the
use of conventional data mining tasks like clustering to, by summarising,
help in debugging huge MAS.

1 Introduction

Nowadays, there is almost a total lack of tools to assist in the task of debugging
and monitoring agent based distributed information systems in where the typi-
cal scenario of execution involves hundreds of thousands agents. In such cases,
strong and flexible tools are needed to log and recover all necessary data and to
analyze it by giving enoughly abstract views. These views should maintain the
appropriate abstraction level because, in scenarios involving such a high number
of agents, there is a clear necessity of summarizing to gain sight into what is
really happening in the system. This paper proposes the use of data mining over
agent messages to support this difficult task. Techniques exposed in this paper
are implemented in the ACLAnalyser. This tool is described elsewhere [4] and
you can find it at the JADE agents platform web page, in the form of an add-on.

The rest of the article is organized as follows. Section 2 introduces the general
problem of debugging pieces of software and delimitates the particular issue of
debugging agents. Section 3 is devoted to define the general framework we pro-
pose here, i.e. to use data mining on agent communication language messages to
assist the developer in debugging a MAS (Multi-Agent System). Finally, section
4 outlines initial conclusions and points out future research.

2 Debugging Software Artefacts

Debugging and testing software artefacts is not easy task [22]. Moreover, pro-
gramming errors may lead to get an information system down virtually all the

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 217–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

218 J.A. Bot́ıa, J.M. Hernansáez, and A.F. Gómez-Skarmeta

time, make services offered by a software company unavailable, make not dessired
changes to valuable information and, in the worst case, produce wrong outputs.

In debugging software programs we find two different approaches. The first one
consists in explicitly modifying the program being debugged to include checks
about, for example, the values of critical variables. After that, the analysis pro-
cess is done without having to execute the code, i.e. statically. This is the ap-
proach we may find, for example, in what is called model checking [5]. It consists
in, given a code to check, to use a graph which represents the different states
in which the code being checked may be found. After this graph is built, we
use some search algorithm to explore all the possible states trying to find error
states. For an example of a real system which systematically checks code on C
and C++, please see [16]. A related approach is program analysis. It consists in
analyzing the code, without having to execute it in order to detect, for example,
deadlocks and data races. It detects problematic code regions in the source code,
analyzing them and giving an accurate diagnosis about possible errors that may
occur during runtime. Please, see [7] for an example of such debugging programs.
The second approach consists in dynamically monitoring the program. This is
what is called dynamic checking [24]. With a dynamic checker, the target code
is modified in some way that it checks itself about invariants, and reports on
possible violations of the invariants are used to follow the behavior and perform
some diagnosis when necessary.

Considering this ideas, the following questions arise. Do model and dynamic
checking have any applicability in the context of MAS programming? To what
extent is conventional code, debugged by the above mentioned tools, related
to that of a typical MAS? Starting from the considerations made in the last
paragraph, we may deduce from the last paragraph that model and dynamic
checking, may be applied to debug the source code of single agents, provided that
they are coded in a language, let it be denoted with L, and we have a checker
for L. In this case, we may detect data races and deadlocks in the internals
of an agent. At the end of the day, this would be conventional debugging, i.e.
it would be like debugging any other program written in L. Notice that this
simple analysis has been done on the basis that L is a general purpose language
and not agent oriented like APRIL and JACK may be. An example of a general
purpose language used to code agents is Java, as it is used in agent programming
environments like JADE, for example. In this case, any existing debugger may
be used to analyze the internals of any single agent. In the case that an agent
oriented programming language is used, specific debugging techniques either
pertaining to model or dynamic checking should be developed first. They should
take into account typical agent programming elements like believes, goals, tasks,
roles and so on. One good example of such approach is the Tracer tool [12]. It
uses reverse engineering and a particular model ckecking to generate relational
graphs which relate beliefs, intentions and actions. They are also used to generate
explanations on actions.

But, would it be possible to apply model and dynamic checking at the inter-
agent level? What are the particularities of MAS programming which makes it

On the Application of Clustering Techniques 219

different from any other concurrent programming discipline? For the rest of the
article, we will limit the answer to that questions with the consideration of an
specific, standard and widely used type of agents, FIPA agents. In principle,
FIPA agents may be coded in any programming language. For example, FIPA
agents from JADE and ZEUS platforms are coded by using Java and agents run-
ning at the APRIL Agent Platform are coded using the April agent programming
language. This three agent platforms are FIPA (i.e. any agent of the three plat-
forms interoperate with agents in the other two platforms). The only thing that
makes all platforms similar is the ACL (Agent Communication Language) [10]
they use. FIPA agents talk to each other using a predefined and standard set of
communicative acts [6]. In consequence, general FIPA agents systems debugging
has to be considered at this level only.

There are two specific reasons for restricting the discussion to FIPA agents.
Firstly, we pretend to define a general approach for MAS debugging. We be-
lieve that to be general is to be useful for more people. However, there is an
important number of different agent theories, architectures and languages. This
is something that makes unaffordable a theory of general debugging with some
guarantee of success. But, the approach is yet general if we take as a reference,
the most widely used framework: FIPA standards are the most widely accepted
references to develop agents and multi-agent systems. In this sense, if we focus
our attention to FIPA agents, we keep the approach general in the sense that
FIPA is the most widely used framework to develop software agents. Secondly,
the FIPA ACL may be considered as a very stable and formally defined ACL
as all performatives used in the communicative act library come with complete
semantics [10].

3 Mining Agent Messages for Debugging

FIPA messages are compound of an envelope and the message content. The en-
velope is a set of attribute-value pairs with the necessary information for correct
delivery and conversation management, as agents structure their communication
through conversations following concrete interaction protocols like, for example,
the well known Contract Net protocol [20,9]. When designing such kind of proto-
cols, it is possible for the designer to incur in some errors. This kind of errors and
techniques for detecting them find their roots in traditional concurrent processes
[3] in which code is written with a number of critical sections and the modeling
task is usually done with Petri nets [19]. To give an example of such errors, an
agent ai may fall into a deadlock when it keeps waiting for a resource r to be
produced by agent aj and, at the same time, aj needs another r′ to produce r
and it is precissely ai which should produce r′.

In the context of this paper, we are focusing in debugging systems whose
design has been completely defined and the MAS has been coded in a concrete
language. These kind of errors we mention in the last paragraph will be produced
in the design phase when all the coordination protocols for agents interaction
were totally specified. In this phase, it is usual to use either finite state automata

220 J.A. Bot́ıa, J.M. Hernansáez, and A.F. Gómez-Skarmeta

or Petri nets to specify the interaction protocols that agents use to interact [21,1].
Hence, is a responsibility of the designer to produce a correct design or either
detect these errors. The work of Poutakidis et al. goes in this direction [17,18].
In Prometheus methodology for agent oriented software engineering, interac-
tion diagrams are used to specify interaction protocols and them diagrams are
transformed into petri nets which are used to follow dialogues between agents.
Another interesting approach for interaction protocols verification consist in us-
ing a declarative language to express what is expected from each message, in
terms of semantics [2]. This is then used to validate conversations.

So, what kind of systems are the target of ACL mining? This kind of data min-
ing, as we see it, is useful when there is an important number of agents implied
in the MAS, conforming an agent society. Moreover, such a MAS compounds a
society of hundreds, thousands or even millions agents and an important number
of them show a high communication activity (i.e. the number and size of mes-
sages exchanged is high during time). The whole picture of debugging, which
shows what is the place reserved to ACL messages mining, appears depicted at
figure 1.

Fig. 1. The different debugging types when considering multi-agent systems

3.1 Source Data

This section will formally define ACL messages mining, ACLM2 for short. We
will define what may be the data to be mined in this case and how it will be
organized.

Let M be the set of all possible messages that can be exchanged between FIPA
agents. An element of M , let it be denoted with m, may be defined as m = (e, c)
where the e = {v1, v2, . . . , vn} refers to the envelope of the message by means
of the variables representing each of its parameters such as vi refers to the i-th
parameter and contains the value of that parameter in m. Besides, c represents
the content of the message. We may also define a session in a run of a MAS, let

On the Application of Clustering Techniques 221

it be denoted with Sk for the k-th run, as the total set of messages exchanged
in that run. Moreover, Sk may be seen as a data set, compound by tuples of the
form (e, c). Tuples in Sk contain categorical data (e.g. the sender and receiver of
the message) and numerical data (e.g. the timeout to wait for the next message
in the conversation). From now on, we can see each Sk as a relation that could
be analysed and it would be possible to extract some knowledge from it, i.e. we
can apply conventional data mining [8] techniques to study the activity of the
multi-agent system being programmed. Hence, we define ACLM2 as the process
of applying conventional data mining techniques to data coming from sessions,
with the purpose of locating anomalous behaviors in the execution of the MAS
being debugged.

3.2 Data Visualization

One typical data mining task is complex data visualization [23]. In this task,
data is analysed to find adequate graphical representations which, at a first
sight, are capable of representing information in a manner that may allow to
obtain quick answers to questions made on source data. We believe that using
data visualization in the multi-agent systems development process is useful. And
this will be demonstrated through the rest of section 3.

One of these graphical representations is what is called an agent communica-
tion graph. It consists in a directed graph in which nodes are agents and node i
is connected to node j when agent i has sent one or more messages to agent j
and j received them correctly. More information may be added to the graph, for
example, decorating each arc with the number of messages sent and the total
number of bytes transferred. Some of the applications of this very basic view of
the whole system are:

– detection of no communication, when expected, between a number of agents,
– detection of excessive amount of bytes exchanged between two or more agents

and
– detection of unbalanced execution configurations in which agents from a

specific group (or machine) show an amount of activity disproportionate to
the rest.

We may find this kind of application view in systems like Zeus agent platform
tools. This kind of information representation tools are very convenient when
the number of agents in the system being debugged is small (i.e. less than one
hundred agents, for example). However, they become useless when this number
grows. In this scenarios, when multi-agent systems are really huge, we need more
abstract representations. We will now illustrate the situation with a concrete
example.

3.3 An Example

This example will consist in using a coordination protocol to distributely decide
which agent, among a group of one thousand, will be the leader. This algorithm
can be found in [15], pag. 101 and the following is a possible pseudo-code:

222 J.A. Bot́ıa, J.M. Hernansáez, and A.F. Gómez-Skarmeta

maxId = ID;
send ID to all acquaintances
on reception of message J do
if maxId < J then
maxId = J;
send J to all acquaintances;

end
on message from each acquaintance received do
if maxId = ID then return leader else return follower

where ID is an unique identifier which all agents have and which has been ran-
domly set. The leader selection process ends when the agent with the highest
ID assumes the leadership, and when this occurs, all agents know which ID is
the highest one. An agent knowing that its ID is lower that at least one of the
received IDs deduces that it is not the leader. If all IDs received by an agent are
lower that its ID, it becomes the leader.

Let n be the number of total agents and m an integer, such as m << n. The
m represents the number of different disjunct sets in which the n agents are
organized. Lets suposse, for simplicity, that the number of agents in each subset
is n/m. For each agent set, there will be a group coordinator. This agent has the
rest of agents in the same group as acquaintances and these other agents have
the coordinator as their unique acquaintance. With this arrangement, the agent
communication graph will be a tree, in which the root node is the launcher (i.e.
the agent which starts all the others and inform them to start executing) and
its direct children are the group coordinators, each one having as children their
respective acquaintances.

If we run this example with m = 500 and n = 5, we may obtain a communi-
cation graph like the one appearing in figure 2. This graph was obtained with
the ACLAnalyser tool [4]. Quickly, we can conclude that this representation is
useless because, in this case too much information is not information. However,
still a similar graph may be useful in the form of a more abstract representation
of the same scenario.

3.4 Clustering Agents for More Abstraction

In this section, we will explain our approach to summarize complex communica-
tion graphs, produced in situations where huge MAS runs are represented. The
key here is to find which are the most convenient graphical representations or
views. Two useful views are the following:
– similar communication activity view: a view in which agents are grouped in

the same cluster if they communicate with the same agents. With this view
we can group agents showing the same external behavior. Hence, they are
similar.

– cooperation activity view: a view in which agents are grouped in the same
cluster if they maintain a high communication activity between them. With
this other view agents are arranged together because they cooperate.

On the Application of Clustering Techniques 223

Fig. 2. A communication graph compound by all agents in the example

Other useful views would include, for example, the organizational view in which,
acquaintances are shown related in they maintain some kind of subordinate
relation however, this kind of view is out of the scope of the paper.

Obtaining a similar communication activity view. The rest of the section
is devoted to explain how to obtain a similar communication activity view. We
may perform a clustering over all messages exchanged in such a way that agents
were grouped into clusters. Then, a group of k agents belonging to the same
cluster would mean that these n agents have been maintaining a similar commu-
nication activity (i.e. they have been communicating with the same agents and
consequently, they appear grouped).

224 J.A. Bot́ıa, J.M. Hernansáez, and A.F. Gómez-Skarmeta

The particular clustering process we have used here to illustrate the effectiv-
ity of ACLM2 is based on the ROCK [11] clustering algorithm. Conventional
clustering algorithms detect a priori unknown groupings on data [14]. This group-
ing is based on a distance measure, typically the euclidean distance. This basic
clustering works on continuous data. However, we have categorical data (i.e.
messages exchanged between agents in a MAS). This fact brought us to apply
ROCK clustering algorithm. This clustering algorithm works with boolean and
categorical (i.e. symbols) data. Instead of using a distance, ROCK uses the con-
cept of link. This term is, in turn, based also in the concept of neighbor. Two
data points are considered as neighbors if they share some degree of similarity
above a certain threshold. This similarity definition depends on each problem.
Once neighbors are calculated, two data points have a link between them if
they share a common neighbor. After links have been calculated, groupings are
compound by data points highly linked (i.e. they all share a high number of
neighbors). The number of groups created is a configuration parameter of the
algorithm. Hence, the lower the number, the higher the abstraction level we are
using to look at the agents society. What would be the definition of neighbor in
this case? In this application of ROCK, two agents are neighbors if they share
some degree of similarity. Hence, they are neighbors if they share the same links,
which means that they separately communicate with the same agents.

The only thing that rests now is to prepare the session to be mined, Sk, by
means applying a data transformation in order to generate an appropriate data
set for ROCK clustering. This transformation may be defined as the following
set

Trock(Sk) = {(ai, aj)| ai sent some m ∈ Sk to aj},
where ai and aj are agents which participated in Sk. Then we would obtain a
Srock

k from T (Sk).
If we perform the ROCK clustering on Srock

k , we will obtain a graph like
that appearing in figure 3. This functionality appears also in the ACLAnalyser.
Notice that this similar communication activity view represented there is much
more informative that the graph of figure 2. The first thing to notice is that
the graph has a star topology and that there are six different clusters. Notice
that each arc comes with a number showing how many messages are exchanged
between agents in the two connected clusters and the size in bytes. If we look
inside the cluster labeled with Group5 (ACLAnalyser allows to click on each
cluster to show a list of each agent belonging to it) , we find inside only the
leaders of each one of the five groups and also de launcher agent (i.e. the one
that executes all agents and then waits for responses on who is the leader from
each group coordinator). The rest of the clusters have subordinate agents inside.

Obtaining a cooperation activity view. The cooperation activity view
shows how agents in the same cluster maintain a high communication level.
In whose case, it is possible for a developer to discover social arrangements of
agents showing cooperation clouds.

On the Application of Clustering Techniques 225

Fig. 3. A similar communication activity view in which all agents are grouped into six
different clusters

The approach to obtain such a view is similar to the one explained above but
the clustering algorithm is not the same. Here, we may use a k-means clustering
algorithm [13] which arranges data points into clusters but it locates a centroid
in each cluster in such a way that this centroid is the point to what the distance
from the rest of the points of the clusters is minium, on average. This clustering
algorithm is the most well known grouping technique.

In order to correctly apply the algorithm, we need to find the appropriate
data transformation. Given that Sk is the sesion we will mine, we transform
it into a Skm

i which represents the mentioned cooperation activity view. The
idea is that two agents are more near (in the sense of the distance used be-
tween data points at clustering) if they exchange more messages. Then, two
tuples of Skm

i should represent two different agents and no more than one tuple
should represent a single agent. Let us suposse that in the Sk run, we have m
agents, {a1, a2, . . . , am}. Then, in this case, the transformation of Sk should be
defined as

Tkm(Sk) = {(b1,i, . . . , bm,i)|1 ≤ i ≤ m and bj,i ≡ number of bytes sent from aj to ai}.

The kmeans clustering needs a distance metric so we may also define the com-
munication activity distance, let it be denoted with di,j between agents i and j, as

di,j =
1

1 + tai(aj) + taj (ai)
,

where tai = (b1,i, . . . , bm,i) ∈ Tkm(Sk) and tai(aj) refers to the j − th value
of tuple tai . Now, it is possible to apply the conventional k-means clustering
algorithm.

226 J.A. Bot́ıa, J.M. Hernansáez, and A.F. Gómez-Skarmeta

4 Conclusions and Future Work

In this article we have shown how data mining can be applied to debug highly
populated MAS. We have identified the different kinds of debug tasks which
may be performed over a MAS, depending on the agent level (i.e. inter and intra
agent). We have concluded that data mining may be applied on ACL messages to
discover, for example, unknown arrangements of acquaintances in very populated
agent societies. We have only used a single data mining task which is clustering.
We have shown that, depending on the particular transformations applied to the
data obtained in a single run, it is possible to obtain different kinds of groupings
of agents in the systems which would help in the debugging process.

Ongoing works include exploring other possible transformations to be applied
to Sk to obtain new and useful views. We are also exploring the application of
other data well known and widely used mining tasks like classification, regression
or association rules mining.

Acknowledgements

Supported by the Spanish Ministry of Education and Science through the
Research Project TIN-2005-08501-C03-02 and also by the ENCUENTRO
(00511/PI/04) research project of the Seneca Foundation with the CARM.

References

1. S. Abdelwahed and W. M. Wonham. Blocking detection in discrete event systems.
In Proceeding of the American Control Conference, pages 1673–1678, Denver, Col-
orado, 2003.

2. Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni.
Specification and verification of agent interaction using social integrity constraints.
Electronic Notes in Theoretical Computer Science, 85(2), 2004.

3. Gregory R. Andrews. Concurrent Programming. Principles and Practice. Addison-
Wesley, 1991.

4. Juan A. Bot́ıa, Juan M. Hernansáez, and Antonio F. Gómez-Skarmeta. Towards
an approach for debugging mas through the analysis of acl messages. Computer
Systems Science and Engineering, 20, July 2005.

5. E.M. Clarke, O. Grumber, and D. Peled. Model Checking. MIT Press, 1999.
6. P. R. Cohen and H. J. Levesque. Communicative actions for artificial agents.

In Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95), pages 65–72, San Francisco, CA, June 1995.

7. Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection of race con-
ditions and deadlocks. In Proceedings of the SOSP, 2003.

8. Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Data Mining
and Its Applications: A General Overview. In Jiawei Han Evangelos Simoudis
and Usama Fayyad, editors, The Second International Conference on Knowledge
Discovery & Data Mining. AAAI Press, August 1996.

9. FIPA. FIPA Contract Net Interaction Protocol Specification. SC00030, 2002.

On the Application of Clustering Techniques 227

10. Foundation for Intelligent Physical Agents. FIPA Communicative Act Library
Specification. SC00037, 2002.

11. Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust clustering
algorithm for categorical attributes. Information Systems, 25(5):345–366, 2000,
(citeseer.nj.nec.com/guha00rock.html).

12. D. N. Lam and K. S. Barber. Comprehending agent software. In AAMAS ’05:
Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pages 586–593, New York, NY, USA, 2005. ACM Press.

13. J. B. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In 5-th Berkeley Symposium on Mathematical Statistics and Probability,
Berkeley, 1967. University of California Press.

14. Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
15. Jorg P. Muller. The Design of Intelligent Agents. A Layered Approach, volume

1117 of Lecture Notes in Artificial Intelligence. Springer, 1996.
16. Madanlal Musuvathi, David Y.W. Park, Andy Chou, Dawson R. Engler, and

David L. Dill. Cmc: A pragmatic approach to model checking real code. In Pro-
ceedings of the OSDI, 2002.

17. David Poutakidis, Lin Padgham, and Michael Winikoff. Debugging multi-agent
systems using design artifacts: The case of interaction protocols. In AAMAS’02,
Bologna, Italy, July 2002.

18. David Poutakidis, Lin Padgham, and Michael Winikoff. An exploration of bugs
and debugging in multi-agent systems, 2003.

19. Wolfgang Reisig. Petri Nets, An Introduction. Springer-Verlag, Berlin, 1985.
20. Reid R. Smith. The contract net protocol: High-level communication and control

in a distributed problem solver. In A. H. Bond and L. Gasser, editors, Readings in
Distributed Artificial Intelligence, pages 357–366. Morgan Kaufmann Publishers,
Los Altos, CA, 1988.

21. Agnieszka Wegrzyn, Andrei Karatkevich, and Jacek Bieganowski. Detection of
deadlocks and traps in petri nets by means of thelen’s prime implicant method.
International Journal of Applied Mathematics and Computer Science, 14(1):113–
121, 2004.

22. James A. Whittaker. What is software testing? and why it is so hard? IEEE
Software, pages 70–79, January 2000.

23. Graham Wills and Daniel Keim. Data visualization for domain exploration. In
Handbook of Data Mining and Knowledge Discovery, pages 226–232. Oxford Uni-
versity Press, 2002.

24. Pin Zhou, Fen Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. iwatcher:
Simple, general architectural support for software debugging. IEEE Micro, pages
50–56, November 2004.

Debugging Agents in Agent Factory

Rem Collier

School of Computer Science and Informatics, University College Dublin, Ireland
rem.collier@ucd.ie

Abstract. The ability to effectively debug agent-oriented applications
is vital if agent technologies are to become adopted as a viable alternative
for complex systems development. Recent advances in the area have fo-
cussed on the provision of support for debugging agent interaction where
tools have been provided that allow developers to analyse and debug the
messages that are passed between agents.

One potential approach for constructing agent-oriented applications
is through the use of agent programming languages. Such languages em-
ploy mental notions such as beliefs, goals, commitments, and intentions
to facilitate the construction of agent programs that specify the high-
level behaviour of the agent. This paper describes how debugging has
been supported for one such language, namely the Agent Factory Agent
Programming Language (AFAPL).

1 Introduction

The provision of support for debugging MAS is increasingly seen as an important
topic of research [10][17]. Much of the impetus behind this surge in interest is
the ever increasing complexity of the problem domains to which agent technolo-
gies are being applied. Further, given the slow emergence of prefabricated agent
systems that are open and extensible, developers are increasingly required to
enhance and adapt these systems to construct new solutions. A side effect that
arises from this trend is the need to integration prefabricated agent systems that
have been developed using different agent toolkits.

While the issue of how to integrate diverse agent toolkits and architectures is
well established through standards bodies such as the Foundation for Intelligent
Phyisical Agents (FIPA) [12], the issue of how to debug synthesized multi-agent
systems is not. Initial approaches to debugging have, by and large, come from
the agent development toolkits research community [14][19][20]. While many of
these approaches share common ground, for example agent state viewing tools
and message monitoring tools, they are all intimately linked to a specific agent
toolkit and do not interoperate.

More recently, a number of new debugging tools have begun to emerge [3][16].
The strength of this new wave of tools is twofold: (1) they have the potential
to be independant of any specific agent toolkit or architecture, and (2) they
present data at a level of abstraction that scales beyond the equivalent first
wave solutions. One such tool is the ACLAnalyser tool, which provides analyses

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 229–248, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

230 R. Collier

of the interactions that occur during the execution of an agent system. While
this system has been implemented and integrated with the JADE framework, its
analysis is based on the passing of FIPA-ACL messages. As such, it should be
a relatively trivial task to integrate the analyser tool with any FIPA-compliant
agent platform, and subsequently provide support for the debugging of agent
systems that are implement using multiple FIPA-compliant agent toolkits.

While implementation independence is an obvious strength when charged with
the task of analysing large scale agent systems that have been implemented using
multiple agent toolkits, it is not sufficient. Implementation independant tools,
tend to focus on externally observable behaviours and are able to help developers
to hone in on the particular agent or community of agents that are functioning
incorrectly. As a result, implementation independant techniques often are not
able to provide support for the inspection of the internal workings of those agents.
In cases where such support is provided, for example [16], there is a reliance on
the developer correctly annotating the internal behaviour of the agent to provide
an observable trace of the agents behaviour.

This paper adopts the perspective that the provision of support for debugging
of the behaviour of individual agents is best supported through the implementa-
tion of debugging tools that are tailored to those agents. Accordingly, this paper
focuses on how one such agent development toolkit, known as Agent Factory
[5] and its associated agent programming language, the Agent Factory Agent
Programming Language (AFAPL), supports the debugging of agent systems. It
tackles this issue in two parts: at compile time, and at run time. The former of
these perspectives aims to reduce, as far as possible, the number of bugs that ap-
pear in the deployed agent system. The latter of these perspectives then focusses
upon the support that is provided once the system is deployed.

2 Related Work

The Zeus Toolkit [19] comes packaged with a set of visualisation and debugging
tools that provides support at both the agent level and the social level. At the
agent level, Zeus includes an micro tool, which developers can use to monitor the
internal state of the agent. Specifically, it provides a message view (messages sent
and received), a summary of actions taken in response to incoming messages, a
view of the coordination process for individual goals, a diary of tasks that the
agent is committed to, a list of allocated resources, and finally, a summary of the
tasks that are being executed or are scheduled for execution [19]. At the social
level, the society tool provides developers with views of both the social structure
of the implemented agent system and the messages that are passed between the
agents in that system. Filtering mechanisms allow the developer to focus in on
particualr types of interactions within the system.

A more recent tool is ACL Analyzer [3]. This tool provides social level support
for developers of large multi-agent systems through the provision of visualisation
and data mining tools for the analysis of agente interactions. Whilst the tool is
implemented for the Jade toolkit [2], it has been designed in a way that it can

Debugging Agents in Agent Factory 231

easily be plugged into any FIPA compliant agent platform. It works via a logging
system that generates a log of all messages that are sent by the agents in the
system. A second part of the tool then performs data mining on that log and
generates views of the system based on ROCK clustering [13].

A third approach to debugging is the Tracing Method [16], a generalised de-
bugging technique that works by capturing dynamic run-time data by logging
actual agent data and then using that data to generate models of system be-
haviour that can be analysed to identify bugs in the agent code. Their approach
works by introducing logging statements into the agent code that can be used
to generate a model of the agents activities. The advantage of their approach is
that it is not tied to any particular toolkit or reasoning model. Instead, the Trac-
ing Method introduces an abstract agent model that logging statements must
conform to and then carries out data mining on this abstract model. The model
itself includes concepts such as event, action, message, belief, goal, and intention
[16]. The main problem with this approach is that, while the approach would
work well for systems that are more reactive, there would be some difficulties
maintaining that mapping for systems that are more deliberative.

A fourth approach to debugging is the JACK Design Tracing Tool (DTT), is
a comprehensive graphical tool that provides support for the visualisation and
control of agent behaviours. As with Zeus’s micro tool, the DTT provides the
developer with a service of views that present aspects of the agents internal
state. From the control perspective, the DTT allows developers to start, stop,
and step the agent through repeated iterations of its execution algorithm.

There are now a number of agent programming languages, available for down-
load, including 3APL [9], and Jadex [21]. Of these languages, Jadex supports
debugging through the use of the Java Logger API, and 3APL comes with a pre-
packaged interface that provides similar, in a very general sense, functionality
to Zeus’s micro tool.

The DTT and micro tools are typical of the kinds of tools that are provided
by agent development toolkit researchers. Both are similar in function, as both
allow the developer to view the internal state of the agent, and both provide
some measure of control over that state. A key observation regarding these sys-
tems is the level of granularity at which the developer is able to step through
the execution of the system. Typically, this granularity is set at the level of
one iteration of the underlying execution algorithm. The rationale for this is
obvious - one iteration is one full transformation of the agents state. The prob-
lem with this, however, is that, when debugging individual agents a developer
may need to see how the state evolves during the transformation process.

3 Agent Factory

Agent Factory (AF) is a purpose-built software engineering framework that de-
livers structured support for the development and deployment of agent-oriented
applications [5][6]. In its earlier form, work on Agent Factory was centered around
the objective of delivering end-to-end support for the implementation of agents.

232 R. Collier

This support included a purpose-built programming language, known as the
Agent Factory Agent Programming Language [8][23], a Foundation for Phys-
ical Intelligent Agents (FIPA) standards [12] compliant run-time environment
with a prefabricated agent-based application infrastructure (i.e. white and yellow
pages services), tool-based support for the fabrication of agents written in that
language [22] and a well-defined software engineering methodology that pro-
motes a structured approach to the design, implementation, and deployment of
agent-oriented applications [7].

3.1 AFAPL

AFAPL is an agent programming language that supports the development of
agents that use a mental state architecture to reason about how best to act. Due
to space constraints, only a brief summary of AFAPL is presented here. For an
informal overview of the syntax and semantics of the language, the author is
directed to [23]. Alternatively, for details of the logic that underpins the syntax
and semantics of AFAPL, the reader is directed to [5].

AFAPL supports the fabrication of agents whose mental state is comprised of
beliefs, goals, and commitments. Beliefs describe - possibly incorrectly - the state
of the environment in which the agent is situated, goals describe future states
of the environment that the agent would like to bring about, and commitments
describe the activity that the agent is committed to realising. The behaviour of
the agent is realised primarily through a purpose-built execution algorithm that
is centred about the notion of commitment management [5].

Within AFAPL, commitments are viewed as the mental equivalent of a con-
tract; they define a course of action/activity that the agent has agreed to, when it
must realise that activity, to whom the commitment was made, and finally, what
conditions, if any, would lead to it not having to fulfil the commitment. Commit-
ment management is then a meta-level process that AFAPL agents employ to
manipulate their commitments based upon some underlying strategy known as a
commitment management strategy. This strategy specifies a set of sub-strategies
that define how an agent adopts new commitments; maintains its existing com-
mitments; refines commitments to plans into additional commitments; realises
commitments to primitive actions; and handles failed commitments.

The principal sub-strategy that underpins the behaviour of AFAPL agents is
commitment adoption. Commitments are adopted either as a result of a decision
to realise some activity, or through the refinement of an existing activity. The
former type of commitment is known as a primary commitment and the latter
as a secondary commitment. The adoption of a primary commitment occurs as a
result of one of two processes: (1) in response to a decision to attempt to achieve
a goal using a plan of action, or (2) as a result of the triggering of a commitment
rule. Commitment rules define situations (a conjunction of positive and negative
belief atoms) in which the agent should adopt a primary commitment.

A key feature of AFAPL, which differentiates it from other agent programming
languages, is the inclusion within the language of a set of programming constructs
that allow the developer to explicitly specify how each agent can interact with its

Debugging Agents in Agent Factory 233

0 IMPORT com.agentfactory.plugins.core.fipa.agent.Agent;
1
2 ONTOLOGY Ping;
3
4 PLAN ping(?name, ?address) {
5 PRECONDITION BELIEF(true);
6 POSTCONDITION BELIEF(true);
7
8 BODY
9 PAR(inform(agentID(?name, ?address), ping),
10 OR(DO_WHEN(BELIEF(fipaMessage(inform,
11 sender(?name, ?addr), pong)),
12 DELAY(20)),
13 SEQ(DELAY(10),
14 adoptBelief(ALWAYS(BELIEF(unavailable(?name,
15 ?address)))))));
16 }
17
18 BELIEF(monitorAgent(?name, ?address)) &
19 !BELIEF(commitment(?self, ?now, BELIEF(true), ping(?name, ?address))) &
20 !BELIEF(unavailable(?name, ?address)) =>
21 COMMIT(?self, ?now, BELIEF(true), ping(?name, ?address));
22
23 BELIEF(fipaMessage(inform, sender(?name, ?addresses), ping)) =>
24 COMMIT(?self, ?now, BELIEF(true),
25 inform(agentID(?name, ?addresses), pong));

Fig. 1. Example Source Code for the Ping Agent

environment. Specifically, AFAPL includes a PERCEPTOR construct, which is
used to specify how the agent senses its environment, and a ACTION construct,
which is used to specify the primitive actions that each agent can use to effect
its environment.

These constructs associate Java classes that implement the sensors and effec-
tors of an agent with the behaviour of that agent which is specified in AFAPL.
The set of actuators and perceptors that are specified for a given agent is known
as the embodiment configuration of that agent.

By way of illustration, figure 1 presents an example of a simple AFAPL Ping
Agent that periodically sends a ”ping” message to a specified receiver. It then
waits a pre-determined amount of time for a ”pong” response from that agent.
If no response is received, then the Ping Agent adopts a belief that the specified
receiver is unavailable.

The first line of this program (line 0) includes an additional block of agent
program code. This code contains, amongst other things, the actions and per-
ceptors needed to support FIPA ACL based agent communication, agent address
book management, and the actions and perceptors needed to support locating

234 R. Collier

and accessing platform services. As is discussed later in section 4, the AFAPL
compiler uses this statement to construct a single deployment file that contains
all the relevant agent program code.

The second line of the program (line 2) declares an ontology called Ping,
which is stored in an ontology file called Ping.ont. This file contains a set of
content language terms that must be specified for the ping program. Specifi-
cally, this file would include the ”monitorAgent(?name, ?address)” term and the
”unavailable(?name, ?address)” term.

Lines 4 to 16 specify a plan that is identified by ”ping(?name, ?address)”.
Informally, this plan specifies the following behaviour:

1. Send a ”ping” inform message to the specified agent
2. Then wait for one of the following to happen:

(a) Wait for the receipt of a ”pong” inform message from the specified agent,
then wait for twenty iterations of the agents interpreter.

(b) Wait for ten iterations of the agent interpreter and then adopt a belief
that the specified agent is now unavailable.

The plan declaration specifies pre- and post- conditions as ”BELIEF(true)”,
which is a default value that causes the conditions to have no effect on the
processing of the corresponding commitment. They are used here purely for
simplicity. The plan itself, it defined in the BODY part of the plan declaration.

The above example plan introduces a number of AFAPL plan operators. The
PAR operation specifies a set of activities that must be carried out, but where
the order is not important. The OR operator also defines a set of activities
that the agent can carry out in any order. However, in contrast with the PAR
operation, the OR operator only requires that one of the activities be completed
successfully. The DO WHEN operator defines an activity that should be carried
out only if an associated condition, specified as a belief, is satisfied. Here, the
condition is the first parameter, and the activity is the second parameter. Finally,
the DELAY operator introduces a delay into the plan. The duration of the delay
is specified as an parameter of the operator and is defined in terms of a number
of iterations of the agent interpreter.

Finally, lines 18-21 and 23-25 specify two commitment rules that implement the
behaviour of of the Ping Agent. The first rule defines when the Ping Agent should
send a ”ping” inform message. Informally, this rule states that, if the agent believes
that it is monitoring an agent, is not currently committed to the ”ping” activity
(which in this case is the ”ping” plan), and does not believe that this agent is un-
available, then it should adopt a commitment to the ”ping” activity. The second
commitment rule is included to illustrate how an agent that receives a ”ping” in-
form message should respond. In this case, the agent responds by sending a ”pong”
inform message back to the agent that sent the ”ping” message.

3.2 Common Bugs in AFAPL Code

Agent Factory and the associated AFAPL programming language have been em-
ployed, over the last 10 years, in the implementation of a nubmer of real-world
systems that cover areas as diverse as robotics [11] and mobile computing [18].

Debugging Agents in Agent Factory 235

As a result of its prolongued use by varous developers, working on these dif-
ferent research projects, it has been possible to identify the three most common
categories of bug that developerrs are confronted with:

1. Incorrectly specified beliefs: This is perhaps the most common bug that arises
when developing AFAPL programs. Simply put, the developer defines a be-
lief that is incorrectly formed. By this, what is meant is that the devel-
oper either mistypes the belief, or else specifies a belief that contains an
incorrect number of parameters. So, given a correctly formed belief such
as ”BELIEF(parent(?name))” a developer may: (a) mistype the belief, for
example, ”BELIEF(Parent(Harry))” - here the capitalised beliefs causes an
bug, or (b) may include an incorrect number of parameters, for example,
”BELIEF(parent(Harry, George))”.

2. Incorrectly specified activity identifiers: This second category bug is similar
to the first category of bug, with the exception that it applies to incorrectly
formed activity (i.e. action and plan) identifiers. In AFAPL, each action and
plan is labelled with a unique identifier that is a combination of a name
together with a set of arguments (it is something similar to a method sig-
nature in Java), for example, ”inform(?receiver, ?content)” is the identifier
for the inform action, which implements the inform FIPA communicative
act. As with beliefs, when specifying a commitment or a plan that uses this
action, the developer may either (a) mistype the identifier, or (b) include an
incorrect number of parameters.

3. Mistyped IMPORT and ONTOLOGY statements: IMPORT and ONTOL-
OGY statements are used to reference additional files that will ultimately
be part of the deployed agent program. In the case of IMPORT statements,
these files contain additional AFAPL code that is used by the current agent
program. In the case of ONTOLOGY statements, the specified files contain
ontologies of terms that can be used when specifying beliefs.

For the majority of cases, these most common AFAPL bugs can be alleviated
by performing a series of checks at compile time. The latter errors, however, are
more difficult to fix. However, in their worst form, the first two categories of bug
can result in the use of the wrong term or activity, or lead to programs that
cannot be debugged at run-time. For example, an agent that sends a request
instead of an inform, or a belief in which the parameters are specified in the
wrong order. As such, this paper describes how support for tracking down and
stopping these bugs have been provided through both the AFAPL compiler and
the Agent Factory Run-Time Environment.

4 Compile Time Debugging

AFAPL program code is organised into one or more source files, identified by
a (.afapl2) extension. This separation of code has been introduced to promote
reusability [8]. Support for the reuse of source code is engendered through the
IMPORT statement (see section 3.1).

236 R. Collier

Fig. 2. Schematic of the AFAPL Compilation Process

When a developer wishes to create and deploy an agent, they must select an
appropriate source file, which for the purposes of this explaination we will call the
primary source file, and compile it into a deployment file (.agent). A schematic of
the compilation process is presented in figure 2. At this point in time, the main
difference between the source file and the deployment file is that the deployment
file is an amalgamation of the various source files that are referenced by the
primary source file. This, however, is a temporary solution, and future versions
of the compiler will generate a deployment file that is more efficient (in terms
of space usage) and more machine-oriented (i.e. can be parsed more effectively
than human readable AFAPL code).

In addition to its primary role as the generator of appropriate deployment
files, the AFAPL compiler also performs a number of checks that aim to ensure
the syntactic and the semantic correctness of the program code. As is common

Debugging Agents in Agent Factory 237

in compilers for other programming languages [1], the syntactic correctness of
AFAPL program code is evaluated through the generation of a parse tree for the
primary source file.

Once generated, the initial parse tree is expanded via a tree traversal that
seeks out any nodes that contain the IMPORT statement and generates addi-
tional parse trees for those nodes. The result of this traversal, known hereafter
as a pass, is a complete parse tree for the selected primary source file (i.e. a
combined parse tree that consists of a parse tree that represents the code from
the primary source file together with parse trees that represent the code from
each of the secondary source files). If, during the creation of this parse tree, a
syntactically incorrect statement is found, the compiler is halted, and a appro-
priate error message is generated. This error message combines a meaningful
error statement together with appropriate contextual information, such as the
line number and the surrounding program code.

The successful generation of a complete parse tree implies that the primary
and secondary source files are syntactically correct. Once achieved, the compiler
moves into a second phase, in which it tries to collect various pieces of information
about the program. Specifically, this phase of the compilation process involves
two passes that:

– Pass 1: Generate Ontology Database. This pass searches the parse tree for
nodes that contain ONTOLOGYconstructs, and builds a temporary database
of content language terms as defined in the specified ontology files.

– Pass 2: Generate Activity Database. This pass searches the parse tree for ac-
tivity (i.e. action and plan) declarations and constructs a temporary database
that contains the identifiers of each of the activities found.

If, during the first pass, the compiler locates an ONTOLOGY node that refers
to a non-existant ontology file, then the compiler halts and an appropriate error
message is generated and displayed. The second pass extracts the identifiers of all
activities (actions and plans) that are declared in the parse tree. A requirement
of AFAPL is that each activity have a unique identifier. This requirement is
enforced during this pass - if the compiler locates an activity identifier that is
already in the activity database, then the compiler halts and an appropriate
error message is generated and displayed.

Once the compiler has collected this data, it them moves on to a third phase
in which it carries out a series of checks that attempt to minimise the potential
for semantic errors. Specifically, it performs two additional passes:

– Pass 3: Check Beliefs. This pass searches the parse tree for nodes that contain
beliefs, and compares them against the terms that are stored within the
ontology database.

– Pass 4: Check Activities. This pass searches the parse tree for plans and com-
mitments and extracts all activity identifiers from them. It then compares
the extracted identifiers against the database of activities that was compiled
in pass 2.

238 R. Collier

Fig. 3. Screenshot of output of the agent compiler when compiling a program using
the AFAPL Netbeans IDE plugin

Passes 3 and 4 are designed to capture, where possible, the first and second
categories of bug, as described in section 3.2. In fact, it is for precisely this
purpose that these phases have been introduced. Unfortunately, support for the
definition of ontologies is a relatively new addition to AFAPL. As a result, we
do not enforce bugs identified by passes 3 and 4 as severely as for passes 1 and 2.
Rather than halt the compilation process when a bug is detected, the compiler
simply generates and displays any appropriate warning message.

The final phase of the compilation process includes just a single pass. This
pass is responsible for the generation of a deployment file that is the output of
the compilation process.

Figure 3 presents a screenshot of the compiler output when used via the
AFAPL Netbeans IDE plugin. As can be seen, AFAPL errors follow the Java
error reporting conventions, allowing Netbeans to automatically detect AFAPL
errors and provide links to the relevant source code.

5 Run Time Debugging

Compile-time approaches to debugging are effective for catching syntax errors
and spotting mistyped or misused terms and activity identifiers. However, they
cannot help developers to detect semantic bugs that arise from the use of valid,
but incorrect, beliefs and activities. For example, sending a request message
instead of an inform message. To detect such bugs, it is necessary to provide

Debugging Agents in Agent Factory 239

some form of inspection tool that allows the developer to analyse, in detail, the
internal workings of an individual AFAPL agent.

Inspection tools are not a new feature of agent toolkits. For example, the Zeus
toolkit [19] comes with a pre-packaged micro tool that allows the developer to
inspect the state of individual agents and trace their execution. In fact, for many
agent toolkits, especially those that can be decomposed into pure Java code, the
default inspection and tracing tools are often the ones that are provided with
the standard Java Integrated Development Environments. Unfortunately, agent
programming languages, such as AFAPL, do not fall into this latter category.
As a result, it is essential that custom inspection and tracing tools be provided.

In the context of AFAPL, and Agent Factory in general, support for inspecting
and tracing an agent’s mental state has long been a key feature [20], which has
been realised through the purpose-built Agent Viewing Tool (AVT). This tool
provides a graphical interface that presents the developer with a number of views
of an agents’ internal state. Additionally, the tool provides a set of controls that
allow the developer to start, stop, and step through the execution of the agent
program. In initial versions of the tool, stepping was fixed at the level of a single
iteration of the corresponding interpreter algorithm and views were restricted to
simple lists that contained the state of a particular mental attitude (e.g. beliefs,
commitments, plans, ...).

While this approach has proved to be a valuable asset in the implementation
of agent systems using AFAPL, it is limited in terms of both: the level of detail,
which was restricted to a simple list-based views of mental atitudes, and the de-
gree of control, where the developer could only step through complete iterations
of the interpreter cycle. Further, while these limitations were not an issue when
the complexity of the implemented systems was small (5 to 10 different kinds of
agent), they have become significant issues as this complexity has increased.

To cater for this increase in complexity, the AVT has been replaced with a
more comprehensive debugging tool, known as the AFAPL Debugger. This tool
aims to provide a range of views of an agent system, one of which is an agent-level
view, which contains an agent inspection tool that is akin to the AVT. Figure 4
presents a screenshot of this new debugging tool with the agent inspection tool
open on an agent called ”rem”.

Access to this revised agent inspection tool is via the ”Agent” tab on the left-
hand side of the AFAPL Debugger. This tab represents the ”agent-level” view of
the system and currently contains a list of the agents that make up that system.
Other views currently provided include the ”Services”, which presents usage
information for any platform services that are deployed on the agent platform;
and the ”Histories” view, which provides access to historical executions of the
agent platform (i.e. previous runs of the system).

In this section, we describe the various enhancements that have been intro-
duced in our revised agent inspection tool, and which have been developed in an
effort to enhance the agent debugging proces:

– To expand the view of the agents internal state to highlight the interplay
between various components of that state.

240 R. Collier

Fig. 4. Screenshot of the AFAPL Debugger with an Agent Inspector open on agent
”rem”

– To deliver additional performance information relating to the operation of
key components such as the interpreter algorithm, the actuators, and the
perceptors.

– To increase the level of control that a developer has over granularity of the
step operation.

– To capture the previous states of the agent allowing:
• support for the analysis of the agents activities over a number iterations

of the interpreter (i.e. allowing the developer to step through and view
the previous mental states of the agent);

• history search mechanisms that allow the developer to identify key states
of interest (e.g. states in which the agent holds a certain belief, or states
in which a certain commitment is adopted).

The first of these improvement relates to practical limitations of traditional
agent inspection tools, which present the developer with a limited series of views
of the mental state of a given agent. These views often take the form of lists
that contain the various atomic sentences that are associated with a given men-
tal attitude after the last iteration. Developers are then expected to infer, via
these views of the agnts mental state, how and why each of the sentences asso-
ciated with a given mental attitude have been adopted/maintained (e.g. in the
case of previous versions of AFAPL, the developer must understand how each
commitment is adopted through analysis of the beliefs, commitments, and com-
mitment rules of the agent). While this is adequate for small agent programs
where there are few commitment rules and as a result it is reasonably easy to

Debugging Agents in Agent Factory 241

Fig. 5. Screenshot of the AFAPL Debugger with an Agent Inspector open on agent
”rem” and the Perceptor Performance view selected

understand why a certain atomic sentence was adopted, it is not the case for
larger programs. Accordingly, the AFAPL agent inspector has been upgraded to
include additional views that clarify why and how an agent has adopted a given
commitment. These new/expanded views include:

– Perceptor Output View: A view of the beliefs that are generated by the
agents perceptors together with a filter, which can be used to restrict the
view to the beliefs that have been generated by a single perceptor.

– Action Output View: Displayed debug statements from actions (which, by
default, includes the adoption or retraction of any beliefs) and provides a
filter that can be used to view debug statements from specific actions.

– Primary Commitment View: Lists the current primary commitments of the
agent and provides a tree based view that supports visualisation of the com-
mitment tree of a primary commitment (see figure 4).

– Commitment Rule View: Provides the standard list based view of the agents
commitment rules, but also provides a view of any adopted commitments
that were generated by the selected commitment rule.

– Message View: Presents a list of all messages sent/received by the agent
since the start of the last iteration.

242 R. Collier

A second set of problems encountered when debugging agent programs using
earlier versions of the agent inspector relate to understanding of the perfor-
mance of the agent. Specifically, many programs reqire the implementation of
actuator and/or perceptor units that must carry out some non-trivial task. For
example, and agent-based search engine, may require the completion of tasks
such as downloading a specified web page, or extracting term frequencies from
a downloaded document. When debugging an agent, or attempting to optimise
the performance of an agent, it is often useful to know how long such tasks are
taking as it directly impacts on the overall performance of the system. To cater
for this, a second set of improvements that have been integrated into the latest
version of the agent inspector is a number of performance views that currently
provide the developer with access to information about the operation of:

– the agent interpreter, in the form of timing information for each of the key
phases of the agent interpreter algorithm (belief update, role management,
and commitment management);

– perceptors, in the form of timing information (currently the worst, best,
average, and last performance times) for each perceptor (see figure 5); and

– actions, in the form of timing information (which is the same as for the
perceptors) for each action that the agent is able to perform.

As is shown in figure 5, the views that present this information are accessible
via the Performance tab of the agent inspector.

The third necessary improvement to the agent inspector has been to increase
the level of control that a developer has over the step operation. The step opera-
tion, as in Object-Oriented (OO) Programming languages, allows the developer
to step through each statement in a program. In many cases, the developer does
not wish to check all parts of a given program, but instead wishes to check only
a certain part of it. To achieve this, the developer inserts a breakpoint just before
the part they are interested in. The developer is then able to run the program
normally up to the specified breakpoint. Once the breakpoint is reached, the
debugger pauses.

As was mentioned in section 2, many of the agent development toolkits pro-
vide tool-based support for accessing the agents internal state. Further, some of
these environment include a step function that allows the developer to step the
agent through successive iterations of its interpreter cycle. While this is good
enough for simpler agents, more complex agents are often more difficult to anal-
yse (they have more information, more rules, and the cause of actions can be
less obvious). However, to be able to better manage the debugging process, a
preferable solution is to provide the developer with more control over how the
debugger steps through the interpeter cycle. To achieve this, we introduce the
notion of a breakpoint into the AFAPL interpreter.

In sequential and OO programming languages, a breakpoint is a pre-defined
point at which a program should pause its execution. Breakpoints are specified
in terms of a statement in that program. Typically, once the system reaches a
breakpoint, the developer starts to step through the program code, analysing
how the state of the program changes.

Debugging Agents in Agent Factory 243

For AFAPL, we introduce two types of breakpoint:

– Mandatory Breakpoints are those breakpoints that are pre-defined for each
instance of the AFAPL interpreter and which map onto a number of well
defined points at which the agent has reached a partial transformation of its
mental state.

– Optional Breakpoints are additional developer specified breakpoints that can
be set in accordance with the debugging task at hand and which map onto
various potential types of event (e.g. the adoption of a specific belief, the
triggering of a commitment rule, the performing of an action, ...) within the
AFAPL interpreter.

To provide support for these two classes of breakpoint, a generic breakpoint
management system has been developed that allows developers to add break-
points as necessary and to set and unset them as required (we term a breakpoint
that has been set to be active, and a breakpoint that has been unset to be inac-
tive). Specifically, a breakpoint manager component has been integrated into the
AFAPL interpreter, which is further augmented through the introduction custom
Java code that we term breakpoint evaluators. A breakpoint evaluator is a snip-
pet of Java code that checks whether any relevant active breakpoints have been
reached. It is inserted into the relevant component of the AFAPL Interpreter
(e.g. the commitment manager component includes a breakpoint evaluator that
is required to check whether or not a given active commitment rule breakpoint
has been reached). Whenever a breakpoint evaluator detects that a breakpoint
has been reached, the AFAPL interpreter is halted, and the remains halted until
the developer either steps or resumes it. In addition to the inclusion of break-
point evaluators, associated components (i.e. those components of the AFAPL
interpreter that implement one or more breakpoint evaluators) must also imple-
ment the Breakpointable interface. This interface requires the implementaton of
a step() method which complements the breakpoint evaluator in that it defines
how a halted agent is restarted/stepped once the developer wishes to move on to
the next breakpoint/continue the execution of the agent. Control of an agent is
realised through the three agent level controls (stop, start, and step respectively)
that are provided as part of the agent inspection tool (see figure 4).

In its most recent version, the AFAPL interpreter has been updated to include
the following types of breakpoint:

– Commitment Rule Breakpoints: these breakpoints are reached whenever the
corresponding commitment rule is triggered.

– Belief Breakpoints: these breakpoints are reached whenever the correspond-
ing belief is adopted.

– Activity Breakpoints : these breakpoints are reached immediately prior to the
realisation of a commitment to a specified activity.

Visualisation and manipulation of the breakpoints associated with an agent
are integrated into the interface of the agent inspection tool. As is shown in
figure 6, the agent inspector includes a collapsable view of the breakpoints that

244 R. Collier

Fig. 6. Screenshot of the Agent Inspector open on agent ”rem” showing the breakpoint
list together with the Commitment Rule view

are currently set for each agent. An icon is associated with each element in this
list that indicates whether or not each breakpoint is set (only set breakpoints
are checked). The green icon indicates that the breakpoint is currently set, while
the red icon indicates that it is not set.

Individiual breakpoints are added to this list via the associated view. For ex-
ample, figure 6 also shows the Commitment Rule view of the agent inspector.
As can be seen in this view, an icon is associated with each of the three commit-
ment rules. This icon indicates whether or not a breakpoint has been set for that
commitment rule. Specifically, a green plus sign indicates that the commitment
rule does not have an associated breakpoint while the red minus sign indicates
that the commitment rule has an associated breakpoint. To add or remove a
commitment rule breakpoint all that the developer needs to do is double click
on the associated commitment rule.

The final improvement that has been made to the agent inspector is this intro-
duction of agent histories together with support for history browsing and history
searching. Typically, agent inspection tools focus exclusively on the current state
of the agent. As such, in order to understand how an agent works, it is necessary
to step through each iteration of the agent interpreter. This, by its nature is an
intrusive process that results in the agent operating differently to how it would
operate if left to run. This results in a scenario where some bugs that are detected
during a normal execution of the system cannot be replicated when debugging
that system (this is especially true for bugs that arise from concurrency issues).

Debugging Agents in Agent Factory 245

Fig. 7. Screenshot of the Agent Inspector open on agent ”rem” after iterations 1 and
2 respectively

Fig. 8. Screenshot of the Agent Inspector open on agent ”rem” showing the results
after searching for the belief ”BELIEF(name(rem))”

To cater for such issues, a history mechanism has been introduced that records
the state of the agent to disk after each iteration of the agent interpreter. A
history browsing mechanism is then introduced that allows the developer to
browse the historical states of each agent. This browsing mechanism is delivered
via a set of historical control buttons that are provided as part of the agent
inspection tool (see figure 4). Currently, these control buttons allow the developer

246 R. Collier

to move to the first iteration, the previous iteration, the next iteration, and
the most recent iteration respectively. Selecting one of these options causes the
relevant state to be loaded from the disk and presented via the standard agent
inspection tool interface.

Finally, to cater for cases where agents have run for some time (i.e. there
are a large number of stored states), a search mechanism is also provided. This
mechanism is located in a collapsable view at the bottom of the agent inspection
tool (see figure 8) and currently provides a mechanism to allow developers to
search an agents history for a given belief. Future versions of this tool will extend
this search functionality to include other mental attitudes and events.

6 Discussion and Conclusions

The provision of strong support for the development and deployment of agent
systems is essential if agent technologies are to gain a wider audience in industry.
One area that has, up to now, received little attention is the area of debugging
agent systems. Current approaches to debugging can be broadly split into two
approaches: community-oriented, and agent-oriented. The former approaches are
primarily concerned with monitoring and bug detection in large scale agent sys-
tems, while the latter approaches are primarily concerned with the detection of
bugs within single agents.

In this paper, we argue that, because of the diversity of implementation ap-
proaches, the most rational vision for the future of debugging systems is as a
combination of implementation-independant debuggers that provide a more ab-
stract view of agent system and implementation-dependant debuggers that are
tailored to a specific agent toolkit. To this end, this paper has described a two
prongued approach to debugging agents written in the AFAPL agent program-
ming language. Specifically, we outline how compile time checking of an AFAPL
agent program can be used to minimise many types of error that commonly arise
when developing AFAPL programs. Following this, we introduce a revised and
improved agent inspector tool that provides support for (1) the inspection of
the internal state of an AFAPL agent, and (2) monitoring of the performance
of the underlying agent components. Additionally, this paper describes a break-
pointing mechanism that has been integrated into the AFAPL interpreter. This
mechanism can be used to set breakpoints at various pre-determined points in
the interpreter cycle. Additionally, the developer can set breakpoints for individ-
ual commitment rules, beliefs, and roles. Once reached, a breakpoint causes the
interpreter to halt its execution of the agent program. The developer can then
use the inspection tool to analyse the state of the agent, and once satisified can
step forwards to the next specified breakpoint. Finally, the third enhancement to
the agent inspection tool has been the introduction of mechanisms for browsing
and searching historical agent states.

While the work presented here focuses on how support for debugging has been
provided for a specific agent programming language, we believe that the tech-
niques that have been applied, namely compile-time checking of agent programs

Debugging Agents in Agent Factory 247

and the introduction of breakpoints as a mechanism for debugging agent pro-
grams at run-time, are also applicable to other agent programming languages
such as 3APL. Currently, 3APL provides a compiler as part of the 3APL agent
platform, however, this compilation step only enforces syntactic correctness of
3APL statements and, to the best of our knowledge, does not check that, for
example, referenced Java classes actually exist or that any beliefs and goals
specified have the correct number of paramters. Further, as far as the author is
aware, while many of this class of agent programming language provides some
form of inspection tool, none of them provide performance information or access
to previous states of the agent.

References

1. Appel, A., Palsberg, J.: Modern Compiler Implementation in Java (Second Edi-
tion). ISBN 0-521-82060-X, Cambridge University Press, UK, 2002

2. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: A FIPA-compliant agent frame-
work. in Proceedings of the 4th International Conference and Exhibition on The
Practical Application of Intelligent Agents and Multi-Agents (PAAM), London,
UK, 1999.

3. Botia, J.: Debugging hugh multi-agent systems: group and social perspectives.
Programming Multi-Agent Systems (PROMAS), Agentlink Technical Forum 3,
Budapest, 2005.

4. Busetta, P., Ronnquist, R., Hodgson, A., and Lucas, A.: JACK Intelligent Agents:
Components for Intelligent Agents in Java. in AgentLink Newsletter 1, January,
1999.

5. Collier, R.: Agent Factory: An Environment for the Engineering of Agent-Oriented
Applications. Ph.D. Thesis, University College Dublin, Ireland, 2001

6. Collier, R., O’Hare, G., Lowen, T., Rooney, C.: Beyond prototyping in the factory
of the agents. In Proceedings of the 3rd Central and Eastern European Conference
on Multi-Agent Systems (CEEMAS’03), 383-393, 2003.

7. Collier, R., Rooney, C., O’Hare, G.M.P.: A UML-based Software Engineering
Methodology for Agent Factory. Proceedings of the 16th International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE-2004), Banff,
Alberta, Canada, 20-25th June.

8. Collier, R., Ross, R., O’Hare, G.M.P.: A Role-based Approach to Reuse in Agent-
Oriented Programming. AAAI Fall Symposium on Roles, an interdisciplinary per-
spective (Roles 2005), November 3-6, Hyatt Crystal City, Arlington, Virginia, USA,
2005

9. Dastani, M., van Riensdijk, B., Dignum, F., and Meyer, J-J: A programming lan-
guage for cognitive agents: Goal directed 3apl. Proc. of AAMAS2003, Melbourne,
2003.

10. Dastani, M., Sanz, J.: Programming Multi-Agent Systems (PROMAS) Agentlink
Technical Forum Report. in Agentlink News, Issue 19, ISSN 1465-3842, November
2005.

11. Duffy, B.R., O’Hare, G.M.P., O’Donoghue, R.P.S., Rooney, C.F.B., Collier, R: Re-
ality and virtual reality in mobile robotics 1st International Workshop on Managing
Interactions in Smart Environments MANSE’99, Dublin December 1999

12. Foundation for Intelligent Physical Agents: The FIPA 2000 Standards. url:
http://www.fipa.org

248 R. Collier

13. Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm for Cat-
egorical Attributes. Information Systems, 2000

14. JACK: JACK Intelligent Agents Tracing and Logging Manual. url: http://www.
agent-software.com/shared/demosNdocs/JACK Tracing Manual WEB/index.html,
8th June, 2005

15. Jennings, N. R.: On Agent-Based Software Engineering. Artificial Intelligence, 117
(2) 277-296, 2000.

16. Lam, D., Barber, K.: Debugging Agent Behaviour in an Implemented Agent Sys-
tem. In Proc. The Second International Workshop on Programming Multiagent
Systems Languages and tools (PROMAS 2004). Held at AAMAS 04, New York,
USA, 2004

17. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction - A Roadmap for Agent-Based Computing. ISBN 085432-845-9, 2005

18. Muldoon C., OHare G.M.P., Phelan D., Strahan R., Collier R.: ACCESS: An Agent
Architecture for Ubiquitous Service Delivery. Proc 7th Intl Workshop on Cooper-
ative Information Agents (CIA2003), Helsinki, 2003.

19. Ndumu, D., Nwana, H., Lee, L., Collis, J.: Visualising and Debugging Distributed
Multi-Agent Systems. Proceedings of the third annual conference on Autonomous
Agents, Seattle, Washington, USA, pgs 326 - 333, 1999

20. OHare, G.M.P., Collier, R., Conlon, J. and Abbas, S.: Agent Factory: An Environ-
ment for Constructing and Visualising Agent Communities. 9th AICS Conference,
Irish Artificial Intelligence and Cognitive Science Conference, UCD, Dublin, 19th-
21st Aug., 1998.

21. Pokahr A., Braubach L., Lamersdorf W.: Jadex: Implementing a BDI-
Infrastructure for JADE Agents. EXP - In Search of Innovation (Special Issue
on JADE), Vol 3, Nr. 3, Telecom Italia Lab, Turin, Italy, September 2003, pp.
76-85.

22. Rooney, C F.B., Collier, R.W., O’Hare, G.P.: VIPER: VIsual Protocol EditoR. in
6th International Conference on Coordination Languages and Models (COORDI-
NATION 2004), Pisa, February 24-27, 2004.

23. Ross, R., Collier, R., O’Hare, G.: AF-APL: Bridging princples and practices in
agent oriented languages. In Proc. The Second International Workshop on Pro-
gramming Multiagent Systems Languages and tools (PROMAS 2004). Held at
AAMAS 04, New York, USA, 2004

Author Index

Ali, Arshad 57
Ali Khan, Majid 93

Bajwa, Aqsa 57
Baldoni, Matteo 149
Boella, Guido 149
Bölöni, Ladislau 93
Bot́ıa, Juan A. 217
Bowring, Emma 41
Braubach, Lars 113, 185
Briot, Jean-Pierre 71

Chopinaud, Caroline 129
Collier, Rem 229

Devèze, Benjamin 129

Ekblad, Joakim N. 93

Farooq, Sana 57
Farooq Ahmad, Hafiz 57
Fischer, Klaus 15
Fitz-Gibbon, T. Ryan 93
Friese, Thomas 15

Gómez-Skarmeta, Antonio F. 217
Grosz, Barbara 41

Hernansáez, Juan M. 217
Houchin, Charles Andrew 93

Khalique, Sana 57

Lamersdorf, Winfried 113, 185
Leite, João 165
Logan Key, Justin 93

Luotsinen, Linus J. 93
Lyu, Jin 93

Malik, Obaid 57
Mermet, Bruno 201
Meron, Denis 201
Meurisse, Thomas 71
Müller, Jörg P. 15

Nguyen, Johann 93
Nigam, Vivek 165

Oleson II, Rex R. 93

Peschanski, Frédéric 71
Pokahr, Alexander 113, 185

Renz, Wolfgang 185

Schurr, Nathan 41
Shehory, Onn 3
Stäber, Fabian 15
Stein, Gary 93
Sudeikat, Jan 185
Suguri, Hiroki 57

Taillibert, Patrick 129
Tambe, Milind 41
Trinh, Viet 93

van der Torre, Leendert 149
Vander Weide, Scott A. 93
Varakantham, Pradeep 41

Walczak, Andrzej 113

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	A Self-healing Approach to Designing and Deploying Complex, Distributed and Concurrent Software Systems
	Introduction
	Problem Statement
	Related Work
	Solution Approach
	Technical Foundations
	Self-healing of Concurrency Problems
	Self-healing of Functional Problems
	Self-healing of Performance Problems
	Integration of the Self-healing Solutions
	Evaluation Methodology

	Summary
	References

	Using Peer-to-Peer Protocols to Enable Implicit Communication in a BDI Agent Architecture
	Introduction
	Application Scenario: Collaborative Product Development
	Background
	BDI Agents for Business Process Modeling and Enactment
	Peer-to-Peer Computing for Decentral Business Resource Management
	BRMF: The Business Resource Management Framework

	Integrating Peer-to-Peer and Agent Concepts
	Related Work
	Discussion of Main Concepts

	Belief Base Virtualization: Concept
	Basic Concepts
	Conceptual Architecture

	Belief Base Virtualization: Implementation
	The Jack Agent Platform
	Implementation of a Shared Belief Base
	Bootstrapping
	Event Creation and Propagation

	Application: Automotive Collaborative Product Development
	Discussion and Outlook

	Part I
	Asimovian Multiagents: Applying Laws of Robotics to Teams of Humans and Agents
	Introduction
	Human-Multiagent Systems
	Disaster Response
	Office Assistants

	On Asimov's Laws
	Definition of Harm
	Applying Laws to Teams
	Uncertainty

	Operationalizing Asimov's Laws
	Disaster Response
	Office Assistants

	Related Work and Conclusion

	Persistent Architecture for Context Aware Lightweight Multi-agent System
	Introduction
	Related Work
	Approach
	SAGE Architecture
	SAGE-Lite Architecture
	Differences Between SAGE and SAGE-Lite
	Features of SAGE-Lite
	Programming
	Conclusion

	Architectural Design of Component-Based Agents: A Behavior-Based Approach
	Introduction
	Rationales and Styles for Agent Architectures
	Cycle-Based Style
	View-Based Style
	Level-Based Style
	Behavior-Based Style
	Discussion

	The MALEVA Model of Component
	Data Flow and Control Flow
	An Introductory Example
	Designing Agent Behaviors

	A First Example: Bottom-Up Design of Prey and Predator
	Abstract Architecture of a Situated Agent
	Prey Behavior
	Control Components
	Predator Behavior

	A Second Example: Top-Down Design of Ants
	The Living Pattern
	The Behavior of an Ant

	Implementation
	Evolution of Implementation
	Modes of Activation and Scheduling
	From Methods to Components

	Related Work
	Further Issues and Future Directions
	Conclusion

	Part II
	Comparing Apples with Oranges: Evaluating Twelve Paradigms of Agency
	Introduction
	The Feed-Fight-Multiply World
	Twelve Agents, Twelve Paradigms
	AffectiveAgent: Anthropomorphic and Affective Model
	GenProgAgent: Genetic Programming
	Reinforcer: Reinforcement Learning
	CBRAgent: Case-Based Reasoning
	RuleBasedAgent: Forward Reasoning
	NaiveAgent: Naive Programming, Scripting
	GamerAgent: Game Theory
	CrowdAgent: Crowd Model
	NeuralLearner: Neural Networks
	SPFAgent: Social Potential Fields
	CxBRAgent: Context Based Reasoning
	KillerAgent: Simple Heuristics

	Implementation Effort
	Findings
	Development Process
	The Limits of Learning
	A Rose by Another Name
	The Importance of the Heuristics
	``Paradigm-Pure Models Considered Harmful'' or ``Let Us Now Praise the Paradigm''?

	Conclusions

	Augmenting BDI Agents with Deliberative Planning Techniques
	Introduction
	Planning Concepts
	Planning Algorithm
	Integration with a BDI Framework
	Preparing a Planning Problem Instance
	Planning and Execution
	Managing Plan Failures

	Examples
	Blocks' World
	Loader Dock

	Related Research
	Conclusion

	ALBA: A Generic Library for Programming Mobile Agents with Prolog
	Introduction
	Why a New Platform?
	Why Prolog?
	Related Works

	Overview of ALBA
	Main Features
	General Overview
	Towards Distributed Modularity

	Communications Handling
	Search Method
	Introduction
	An Improved Algorithm

	Migration Protocol
	Description
	Discussion

	Reasoning Threads: A Model of Agency
	Basic Concepts
	Description
	Execution Model
	Mobility
	Discussion

	Applications
	Future Works
	Conclusion

	Bridging Agent Theory and Object Orientation: Agent-Like Communication Among Objects
	Introduction
	Communication Between Objects
	Modelling Interaction with $power-Java$
	Uses of Roles in $power-Java$
	The Contract Net Protocol Example

	Conclusion

	Adding Knowledge Updates to 3APL
	Introduction
	Preliminaries
	Languages and Logic Programs
	Dynamic Logic Programming
	Propositional 3APL

	Modified Syntax
	Modified Semantics
	Modified Belief Query Semantics
	Semantics of Action Execution

	Properties of the Modified 3APL
	Example
	Conclusions

	Part III
	Validation of BDI Agents
	Introduction
	The BDI Agent Architecture
	Validating Multi--agent Systems
	Validating Agent Communication
	Validating BDI Concepts

	A Practical Approach to the Validation of BDI Reasoning
	Assertions in BDI-Concepts
	Static Analysis

	A Case Study -- The Marsworld in Jadex
	Validation Support for the Jadex System
	Checking Consistency Using Assertions
	Internal Event Consistency
	MessageEvent Consistency

	Conclusions

	A Tool Architecture to Verify Properties of Multiagent System at Runtime
	Introduction
	State of the Art
	Specification Language
	Behavior Study
	Exception Handling
	Design by Contract
	Synthesis

	Properties
	Definition
	Formalism
	Properties Extraction
	Specification Languages

	PVA : Property Validation Architecture
	Introduction
	Architecture Basis
	Properties
	Plug-ins

	Conclusion

	On the Application of Clustering Techniques to Support Debugging Large-Scale Multi-Agent Systems
	Introduction
	Debugging Software Artefacts
	Mining Agent Messages for Debugging
	Source Data
	Data Visualization
	An Example
	Clustering Agents for More Abstraction

	Conclusions and Future Work

	Debugging Agents in Agent Factory
	Introduction
	Related Work
	Agent Factory
	AFAPL
	Common Bugs in AFAPL Code

	Compile Time Debugging
	Run Time Debugging
	Discussion and Conclusions

	Author Index

